基于分布式联邦学习的农产品供应链跨域风险信息检测研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFF1101103)、国家自然科学基金项目(62402020)和北京市教育委员会“市属高校分类发展———北京工商大学数字商学新兴交叉学科平台建设冶项目


Distributed Federated Learning Framework for Cross-domain Risk Information Detection in Agricultural Product Supply Chains
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    农产品供应链安全事关国家发展与社会稳定,但其多环节、多主体结构使得风险信息共享在隐私保护与精准检测之间面临重大挑战。融合区块链与联邦学习技术,构建面向农产品供应链的跨域风险信息可信共享与检测模型。首先,提出一种基于分布式联邦学习的跨域风险信息交互框架,实现农产品供应链风险信息可信流转,然后,构建基于孤立森林异常数据检测算法的农产品供应链风险信息多级检测模式,最后,设计风险贡献和信用值评估模型以确保农产品供应链参与方拥有持续共享核心风险数据的动力,同时动态评估和管理农产品供应链节点的贡献度和可信度。各项实验结果表明,本文所提出的模型能够显著提升跨域风险信息共享效率与预测准确性,为农产品安全领域提供一种兼顾风险信息隐私保护和高效处理的可信共享解决方案。

    Abstract:

    The security of agricultural product supply chains plays a critical role in national development and social stability. However, the inherently complex structure of these supply chains—characterized by multiple stages, diverse stakeholders, and heterogeneous data sources—poses significant challenges for risk information sharing, especially in balancing data privacy protection with accurate risk detection. In response, a novel cross-domain risk information detection and trustworthy sharing model was proposed by integrating blockchain and federated learning technologies. Specifically, a distributed federated learning-based interaction framework was established to enable secure and decentralized circulation of risk information across different supply chain entities. To enhance anomaly detection, a multi-level evaluation mechanism based on the isolation forest algorithm was introduced to identify abnormal data patterns at various stages of the supply chain. Additionally, a dynamic risk contribution and credit evaluation model was developed to incentivize stakeholders to continuously share high-value risk data, while assessing their trustworthiness and participation levels in real time. Extensive experiments validated the effectiveness of the proposed approach in improving the efficiency, accuracy, and reliability of cross-domain risk information sharing. This work can provide a scalable and privacy-preserving solution tailored for the agricultural supply chain, offering practical implications for intelligent risk governance and data-driven decision-making in agri-food systems.

    参考文献
    相似文献
    引证文献
引用本文

张新,肖柳君,许继平,于家斌,谭学泽,赵峙尧.基于分布式联邦学习的农产品供应链跨域风险信息检测研究[J].农业机械学报,2025,56(6):56-66,89. ZHANG Xin, XIAO Liujun, XU Jiping, YU Jiabin, TAN Xueze, ZHAO Zhiyao. Distributed Federated Learning Framework for Cross-domain Risk Information Detection in Agricultural Product Supply Chains[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):56-66,89.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码