基于改进双目ORB-SLAM3的特征匹配算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省科技厅基础研发计划-青年基金项目(202301AU070059)和昆明理工大学人才培养项目(KKZ320230104)


Feature Matching Algorithm Based on Improved Binocular ORB-SLAM3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。

    Abstract:

    Aiming at the problem that the traditional ORB algorithm fails to meet the high-precision localization requirements due to the high mis-matching rate in the binocular feature matching stage, a feature matching algorithm based on the improved binocular ORB-SLAM3 is proposed. The nearest neighbor matching algorithm (FLANN) is introduced in the feature point matching stage, and more accurate matching pairs are filtered out by setting the ratio threshold, and the adaptive weighted SAD-Census algorithm is introduced in the binocular ORB-SLAM3 three-dimensional matching, and the geometric distances between the cases are taken into account to recalculate the SAD values and merge them with the Census algorithm to improve the stability and accuracy of feature matching, while the adaptive weighted SAD-Census algorithm is introduced. At the same time, the adaptive SAD window sliding range is added to further expand the search distance, so as to filter out the correct matches to improve the accuracy of the system. Experiments are carried out in the EuRoC dataset and real indoor scenes, and the results show that compared with the pre-improved ORB-SLAM3 algorithm, the localization accuracy of the improved algorithm is improved by 23.32% in the dataset, and nearly 50% in the real environment, thus verifying the feasibility and effectiveness of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

伞红军,冯金祥,陈久朋,彭真,赵龙云.基于改进双目ORB-SLAM3的特征匹配算法[J].农业机械学报,2025,56(5):625-634. SAN Hongjun, FENG Jinxiang, CHEN Jiupeng, PENG Zhen, ZHAO Longyun. Feature Matching Algorithm Based on Improved Binocular ORB-SLAM3[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):625-634.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码