考虑日光诱导叶绿素荧光的冬小麦蒸散量模拟
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52179046)


Simulation of Evapotranspiration in Winter Wheat Considering Solar-induced Chlorophyll Fluorescence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究在气象数据缺失情况下机器学习模型对冬小麦生育期实际蒸散量(Actual evapotranspiration,ETa)的模拟效果以及日光诱导叶绿素荧光(Solar-induced chlorophyll fluorescence,SIF)对于机器学习模型模拟ETa的优势,将SIF与气象、作物生理指标、土壤水热条件等因素相结合,构建梯度上升(Gradient boosting,GB)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)3种经典机器学习模型和线性回归(Linear regression,LR)模型模拟冬小麦生育期ETa,并与Penman-Monteith(P-M)模型计算得到的蒸散量ET_pm进行对比。结果表明: SIF与ETa显著相关,但仅通过SIF作为特征参数构建的机器学习模型拟合精度较低;根据基于机器学习模型的特征参数重要度排序以及各情景下的模型模拟精度可知,SIF对机器学习模型模拟ETa的精度有提升效果。机器学习模型在有足够的特征参数时拟合效果明显优于P-M模型,且在平均温度、SIF、日照时数、叶面积指数(Leaf area index,LAI)和土壤含水率的基础上继续添加特征参数对模拟精度提升不大,因此推荐使用上述5个特征参数组成的特征集构建机器学习模型进行ETa预测,模型决定系数R2分别为0.92、0.91和0.91,其中GB模型对冬小麦全生育期ETa的拟合效果最好。该研究可在气象数据缺失情况下为当地蒸散量的精准模拟和合理灌溉制度制定提供参考。

    Abstract:

    In order to investigate the simulation effect of machine learning model on actual evapotranspiration (ETa) of winter wheat during the reproductive period and the effect of solar-induced chlorophyll fluorescence (SIF) on the simulation accuracy of machine learning model in the absence of meteorological data, SIF was combined with meteorological indicators, crop physiological indicators, soil thermal conditions and other factors, and three classical machine learning models, namely the gradient boosting (GB), random forest (RF), and support vector machine (SVM) were constructed, combined with linear regression (LR) model to simulate winter wheat ETa and compared with the evapotranspiration ET_pm calculated by Penman-Monteith (P-M) model. The results showed that although SIF was significantly correlated with ETa, the fitting accuracy of the machine learning model constructed only by using SIF as a feature parameter was low; according to the importance ranking of the feature parameters based on the machine learning model as well as the simulation accuracy of the model under each scenario, it was known that SIF had an enhancement effect on the accuracy of the machine learning model in simulating ETa. The machine learning model fit better than the P-M model when there were enough feature parameters, and adding feature parameters to the average temperature, SIF, sunshine hours, leaf area index (LAI) and soil moisture content did not improve the simulation accuracy, so it was recommended to use the feature set composed of the five feature parameters mentioned above to construct a machine learning model to predict ETa. The R2 of the models were 0.92, 0.91 and 0.91, respectively, among which the GB model had the best fitting effect on the ETa of winter wheat during the whole reproductive period. The research result can provide a reference for the accurate simulation of local evapotranspiration and the development of rational irrigation system in the absence of meteorological data.

    参考文献
    相似文献
    引证文献
引用本文

李尧,刘江舟,刘轩昂,赵政鑫,彭雄标,蔡焕杰.考虑日光诱导叶绿素荧光的冬小麦蒸散量模拟[J].农业机械学报,2025,56(5):534-542. LI Yao, LIU Jiangzhou, LIU Xuanang, ZHAO Zhengxin, PENG Xiongbiao, CAI Huanjie. Simulation of Evapotranspiration in Winter Wheat Considering Solar-induced Chlorophyll Fluorescence[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):534-542.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码