融合深度信息与运动趋势的羊只多目标跟踪方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省秦创原“科学家+工程师”建设项目(2022KXJ-67)


Sheep Multi-object Tracking Method Integrating Depth Information and Motion Trends
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着羊只养殖向大规模和精细化的方向发展,羊场对智能化管理的需求日益增加。因此,精准的个体识别和行为监测变得尤为重要,对多目标跟踪(Multiple object tracking, MOT)算法的准确性提出了更高要求。然而,现有的MOT算法在目标遮挡和动态场景下的性能仍不理想。本文提出两种跟踪线索:深度调制交并比(Depth modulated intersection over union, DIoU)和轨迹方向建模(Tracklet direction modeling, TDM),旨在补充交并比(Intersection over union, IoU)线索,提高多目标跟踪的精准度和鲁棒性。DIoU线索通过引入目标的深度信息改进了传统的IoU计算方法。TDM聚焦于目标的运动趋势,预测其未来的移动方向。本文将DIoU和TDM跟踪线索集成到BoT-SORT算法中,形成改进的多目标跟踪算法。在两个私有数据集上,改进算法相比基线方法,MOTA(Multiple object tracking accuracy)指标分别提高1.6、1.7个百分点,IDF1(Identification F1 score)指标分别提高1.9、1.0个百分点。结果显示,改进算法在复杂场景中的跟踪连续性和准确性显著提升。

    Abstract:

    In recent years, the application of information technology in sheep farming has become increasingly sophisticated, necessitating more accurate individual identification and behavior monitoring. This, in turn, has placed higher demands on the accuracy of multiple object tracking (MOT) algorithms, which formed the foundation of these applications. However, existing MOT algorithms often underperformed in scenarios involving object occlusion and dynamic environments. Two novel tracking cues, depth modulated IoU (DIoU) and tracklet direction modeling (TDM), was proposed, aiming at enhancing the precision and robustness of multiple object tracking by supplementing the intersection over union (IoU) cue. DIoU improved the traditional IoU calculation by incorporating depth information of the objects. TDM focused on the movement trends of targets, predicting their future directions based on their historical movement patterns. The DIoU and TDM strategies were integrated into the BoT-SORT algorithm, resulting in an improved multiple object tracking algorithm. Evaluations on two datasets showed that the enhanced algorithm increased the multiple object tracking accuracy (MOTA) by 1.6 percentage points and 1.7 percentage points and the identification F1 score (IDF1) by 1.9 percentage points and 1.0 percentage points, respectively, compared with baseline methods. These results indicated that the improved algorithm significantly enhanced tracking continuity and accuracy in complex scenarios. This research provided insights and methods for multiple object tracking technology, holding significant implications for practical applications.

    参考文献
    相似文献
    引证文献
引用本文

王美丽,杨恩德.融合深度信息与运动趋势的羊只多目标跟踪方法[J].农业机械学报,2025,56(5):475-481,491. WANG Meili, YANG Ende. Sheep Multi-object Tracking Method Integrating Depth Information and Motion Trends[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):475-481,491.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码