基于改进YOLO 11的多尺度板栗果实识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省重点研发计划项目(2020BED027)和湖北省自然科学基金项目(2023AFB871)


Multi-scale Chestnut Detection Method Based on Improved YOLO 11 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现阶段自然条件下板栗目标尺度不一带来的检测局限性,本文基于改进YOLO 11模型提出一种多尺度板栗果实识别方法YOLO 11-MCS。提出了多尺度关键特征聚合模块(MKFA),并将其引入C3k2模块,构建C3k2-MKFA特征提取模块,有效捕捉不同尺度特征信息;提出了CGAFPN网络,通过内容引导注意力模块引入小目标检测层,弥补了原生算法在多尺度、小目标检测中存在的不足;提出了共享卷积分离批量归一化检测头(SCSB),采用共享卷积和分离批量归一化结构,实现跨尺度特征高效提取,增强了不同尺度特征一致性。试验结果表明,改进模型板栗识别准确率为88.2%,召回率为79.2%,平均精度为87.2%,相较于原始YOLO 11s模型,准确率、召回率、平均精度分别提升0.8、5.9、5.5个百分点。采用通道式特征蒸馏后模型平均精度为84.7%,模型内存占用量为6.0MB,经Infer推理库在Jetson Nano上部署后,检测时间为23ms/幅,满足板栗识别要求。

    Abstract:

    Aiming to address the current limitations in detecting chestnut of varying scales under natural conditions, an innovative multi-scale chestnut detection method was introduced, YOLO 11-MCS, based on an improved YOLO 11 model. Firstly, a novel multi-scale key feature aggregation (MKFA) module was proposed, which was integrated into the C3k2 module to form the C3k2-MKFA feature extraction module, effectively capturing features at different scales, enhancing multi-scale feature extraction capabilities. Subsequently, the CGAFPN network was introduced, which incorporated a small object detection layer through a content-guided attention module and increased the contribution proportion of chestnut small object to multi-scale object, overcoming the deficiencies of the original algorithm in multi-scale and small object detection. Finally, a shared convolution separated batch normalization detection head (SCSB) was presented, utilizing shared convolution and separated batch normalization structures to efficiently extract cross-scale features and enhance feature consistency across different scales, effectively improved the performance of multi-scale object detection. Experimental results demonstrated that the improved model achieved a chestnut detection precision of 88.2%, a recall rate of 79.2%, and an average precision of 87.2%, which had improvements of 0.8, 5.9, and 5.5 percentage points, respectively, compared with the original YOLO 11 network. The model with channel-wise feature distillation achieved an average precision of 84.7%, with a model size of 6.0MB. When deployed on the Jetson Nano using the Infer inference library, the detection speed was 23ms per image, meeting the requirements for chestnut detection.

    参考文献
    相似文献
    引证文献
引用本文

李茂,肖洋轶,宗望远.基于改进YOLO 11的多尺度板栗果实识别方法[J].农业机械学报,2025,56(5):443-454. LI Mao, XIAO Yangyi, ZONG Wangyuan. Multi-scale Chestnut Detection Method Based on Improved YOLO 11 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):443-454.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码