基于改进YOLO v8的复杂温室环境黄瓜果实分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市农业科技创新项目(2023-02-08-00-12-F04621)和国家自然科学基金项目(61762013)


Improved YOLO v8 Method for Cucumber Fruit Segmentation in Complex Greenhouse Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    黄瓜果实的检测与分割对于表型分析和黄瓜生长管理至关重要。然而,在复杂温室环境下,果实往往与茎叶相互遮挡,且果实与背景颜色相似,导致传统方法在复杂环境下难以准确识别果实边界并实现高效分割。为此,提出了一种基于改进YOLO v8的黄瓜果实分割方法。该方法引入可变形卷积(Deformable convolution network v4,DCNv4)增强模型空间适应性;同时采用RepNCSPELAN4模块串联额外的C2F模块,细化特征提取与融合;从而提升了模型在复杂温室环境下对黄瓜果实图像的分割性能。实验结果显示,在玻璃温室和塑料连栋大棚两个实验场景中的多个类别上均有出色表现。其中,在玻璃温室场景中的精确率为96.3%,召回率为93.1%,平均精度均值mAP50为96.2%,mAP50-95为85.3%;在塑料大棚场景中的精确率为86.8%,召回率为81.9%,平均精度均值mAP50为90.0%,mAP50-95为77.0%。本研究提出的改进方法在处理边界、多重遮挡和多尺度分割方面具有更强的鲁棒性和泛化性,使模型能适应复杂性不同的多样化种植环境而准确分割黄瓜果实。精确的果实图像分割有助于表型参数的获取,为黄瓜果实的表型分析提供了可靠的技术支持,从而促进农业表型机器人的应用。

    Abstract:

    The detection and segmentation of cucumber fruits are crucial for phenotypic analysis and the management of cucumber growth. However, in complex greenhouse environments, fruits are often occluded by stems and leaves, and their color may be similar to the background, making it difficult for traditional methods to accurately identify fruit boundaries and achieve efficient segmentation. To address this issue, an improved YOLO v8-based method for cucumber fruit segmentation was proposed. This method incorporated deformable convolution network v4 (DCNv4) to enhance the model’s spatial adaptability and utilized the RepNCSPELAN4 module in combination with an additional C2F module to refine feature extraction and fusion, thereby improving the model’s segmentation performance for cucumber fruit images in complex greenhouse environments. Experimental results showed outstanding performance across multiple categories in two experimental settings: a glass greenhouse and a plastic greenhouse. Specifically, in the glass greenhouse scenario, the model achieved a precision of 96.3%, recall of 93.1%, mean average precision (mAP50) of 96.2%, and mAP50-95 of 85.3%. In the plastic greenhouse scenario, the precision was 86.8%, recall was 81.9%, mAP50 was 90.0%, and mAP50-95 was 77.0%. The proposed method demonstrated stronger robustness and generalization in handling boundary issues, multiple occlusions, and multi-scale segmentation, enabling the model to adapt to diverse and complex cultivation environments and accurately segment cucumber fruits. Accurate fruit image segmentation facilitated the acquisition of phenotypic parameters and provides reliable technical support for further phenotypic analysis of cucumber fruits, thereby promoting the application of agricultural phenotyping robots and the intelligent development of agricultural production.

    参考文献
    相似文献
    引证文献
引用本文

夏天,谢纯,李琳一,陆声链,钱婷婷.基于改进YOLO v8的复杂温室环境黄瓜果实分割方法[J].农业机械学报,2025,56(5):433-442. XIA Tian, XIE Chun, LI Linyi, LU Shenglian, QIAN Tingting. Improved YOLO v8 Method for Cucumber Fruit Segmentation in Complex Greenhouse Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):433-442.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码