基于改进MBS-YOLO v8的火龙果目标检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

海南省科技人才创新项目(KJRC2023D38)和海南大学协同创新中心项目(XTCX2022STC16)


Pitaya Fruit Target Detection and Localization Method Based on Improved MBS-YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决因火龙果果实尺寸不一、数量众多而造成的重叠遮挡问题,本文提出了一种基于YOLO v8模型的多尺度加权特征融合网络(MBS-YOLO v8)。在特征提取模块中加入挤压和激励网络(Squeeze-and-excitation attention,SEAttention)机制,以增强网络捕捉关键细节能力,解决小目标检测问题。提出一种多尺度加权融合网络(Multi-scale weighted fusion network,MWConv)用于生成具有不同感受野的特征图,增强了图像中全局特征的捕获能力。试验结果表明,MBS-YOLO v8准确率为92.5%,召回率为90.1%,平均精度均值mAP50为94.7%。与YOLO v8n算法相比,MBS-YOLO v8准确率、召回率和mAP50分别提高2.1、5.9、2个百分点。本文MBS-YOLO v8〖JP+2〗模型展现出高度的鲁棒性,该方法有效地将全局特征信息与低维局部特征相结合,从而提高了模型对图像内容的理解,能够应对与重叠遮挡和小目标相关的挑战,为火龙果及其他同类型目标检测提供了改进思路。

    Abstract:

    Aiming to address the issue of overlapping occlusion caused by the varying sizes and large quantities of dragon fruit, a multi-scale weighted feature fusion network (MBS-YOLO v8) was proposed based on the YOLO v8 model. Firstly, the squeeze-and-excitation attention (SEAttention) mechanism was incorporated into the feature extraction module to enhance the network’s ability to capture critical details, thereby addressing the challenge of small object detection. Secondly, a multi-scale weighted fusion network (MWConv) was introduced to generate feature maps with varying receptive fields, improving the capture of global features within images. Finally, experimental results demonstrated that MBS-YOLO v8 achieved an accuracy of 92.5%, a recall rate of 90.1%, and a mean average precision (mAP50) of 94.7%. Compared with the YOLO v8n algorithm, MBS-YOLO v8 showed improvements of 2.1 percentage points, 5.9 percentage points, and 2 percentage points in accuracy, recall, and mAP50, respectively. The proposed MBS-YOLO v8 model exhibited high robustness, effectively integrating global feature information with low-dimensional local features to enhance the model’s understanding of image content. This approach effectively addressed challenges related to overlapping occlusion and small object detection, providing an improved methodology for detecting dragon fruit and other similar targets.

    参考文献
    相似文献
    引证文献
引用本文

刘进一,晏伏山,董赫,付丽荣,付威,陈雨.基于改进MBS-YOLO v8的火龙果目标检测[J].农业机械学报,2025,56(5):425-432. LIU Jinyi, YAN Fushan, DONG He, FU Lirong, FU Wei, CHEN Yu. Pitaya Fruit Target Detection and Localization Method Based on Improved MBS-YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):425-432.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码