基于改进YOLO v8n的非结构环境下杭白菊检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32301715、U23A20175)、全省农业智能感知与机器人重点实验室开放课题基金项目(2025QSZD2505)和浙江理工大学校内科研启动基金项目(23242167-Y)


Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在非结构环境下,由于杭白菊的簇状生长特性导致相互遮挡严重,使得杭白菊检测算法的检测精度较低。针对该问题,提出一种改进YOLO v8n的杭白菊检测模型Hwc-YOLO v8n(Hangzhou white chrysanthemum-YOLO v8n)。首先,提出通过增加标签的方式,将实际需求的双类别标签改变为三类别,提升模型对杭白菊各个花期的关键性特征的精细化检测能力;其次,在主干网络中设计一种动态特征提取模块(C2f-Dynamic),以加强模型对被遮挡目标特征缺失情况的动态适应,并在检测头部分增加160像素×160像素的检测头,使得模型具备针对小目标检测的能力;最后,采用角度惩罚度量的损失(SIoU)优化边界框损失函数,提升了模型检测精度和泛化能力。模块位置试验和热力图试验表明,C2f-Dynamic模块能动态适应遮挡目标的特征变化。改进后的Hwc-YOLO v8n模型对遮挡杭白菊识别的平均精度均值提升了1.7个百分点,召回率均值提高了0.88个百分点。模型消融和对比试验结果表明,改进后的Hwc-YOLO v8n模型相比于DETR、SSD、YOLO v5、YOLO v6和YOLO v7,对杭白菊的检测效果更好。平均精度均值相较于DETR、SSD、YOLO v5、YOLO v6和YOLO v7分别提升了5.7、12.6、0.7、0.75、11.25个百分点,召回率均值相较于YOLO v5和YOLO v7提升了2.15、1.4个百分点,可为后续杭白菊智能化采收作业提供技术支撑。

    Abstract:

    In unstructured environments, the cluster growth characteristics of Hangzhou white chrysanthemum lead to severe mutual occlusion, reducing detection accuracy for chrysanthemum detection algorithms. To address this issue, an improved YOLO v8n detection model for Hangzhou white chrysanthemum, called Hangzhou white chrysanthemum-YOLO v8n (Hwc-YOLO v8n), was proposed. Firstly, the model’s ability was enhanced to finely detect critical, similar features of the chrysanthemum by increasing the label categories from two to three. Secondly, a dynamic feature extraction module (C2f-Dynamic) was designed in the backbone network to strengthen the model’s adaptive response to missing features in occluded targets. Additionally, a 160 pixel×160 pixel detection head was added to the detection head section, allowing the model to detect small targets more effectively. Finally, the angle penalty metric loss (SIoU) was adopted to optimize the bounding box loss function, improving both detection accuracy and generalization capability. Experimental results from module placement and heatmap analysis demonstrated that the C2f-Dynamic module can dynamically adapt to feature changes in occluded targets. The improved Hwc-YOLO v8n model achieved a 1.7 percentage points increase in mean average precision and a 0.88 percentage points increase in mean recall rate for the occluded Hangzhou white chrysanthemum. Ablation and comparison experiments showed that the improved Hwc-YOLO v8n outperformed DETR, SSD, YOLO v5, YOLO v6, and YOLO v7 in detection of the chrysanthemum. Specifically, compared with DETR, SSD, YOLO v5, YOLO v6, and YOLO v7, the mAP was improved by 5.7, 12.6, 0.7, 0.75, and 11.25 percentage points, respectively. The mR was increased by 2.15 percentage points and 1.4 percentage points compared with that of YOLO v5 and YOLO v7, respectively. The research result can provide a technical foundation for future intelligent harvesting of Hangzhou white chrysanthemum.

    参考文献
    相似文献
    引证文献
引用本文

喻陈楠,伍永红,周杰,姚坤,郇晓龙,陈建能.基于改进YOLO v8n的非结构环境下杭白菊检测方法[J].农业机械学报,2025,56(5):405-414. YU Chennan, WU Yonghong, ZHOU Jie, YAO Kun, HUAN Xiaolong, CHEN Jianneng. Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):405-414.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码