基于特征增强的农业短文本语义智能匹配方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省教育厅基础研究项目(LJKQZ20222458)和辽宁省科技计划联合计划项目(2024-MSLH-399)


Exploration of Intelligent Semantic Matching Technique for Agricultural Short Texts Utilizing Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农业短文本数据特征词语少、语义特征稀疏、冗余度高、价值密度低等问题,构建了一种利用多尺度通道注意力算法融合多语义特征的语义匹配模型Font_MBAFF,以提升农业短文本的语义匹配性能。首先利用汉字偏旁部首和四角号码丰富短文本特征;然后利用多尺度卷积核通道注意力加权网络MSCN和基于多头自注意力的双向长短期记忆网络Multi_SAB分别从空间和时间提取语义特征;最后利用文本注意力融合机制TEXTAFF对多种特征进行智能融合。试验结果表明,Font_MBAFF模型可有效弥补短文本特征词少的不足,优化文本特征提取及特征融合,语义匹配正确率达到96.42%,与MaLSTM、BiLSTM、BiLSTM_Self-attention、TEXTCNN_Attention、Sentence-BERT等5种语义匹配模型相比优势明显,正确率至少高2.07个百分点。

    Abstract:

    A deep learning model Font_MBAFF was proposed for the task of text similarity calculation, which was mainly applied to the matching of question pairs in Chinese agricultural short texts. In order to solve the problems of sparse semantic features and inadequate understanding of specialized vocabulary in agricultural short texts, it was firstly optimized in the feature representation stage. By introducing the unique font features of Chinese characters to expand the features, including side radicals and four corner numbers, thus enriching the semantic representation of features. In the feature extraction layer, the multi-scale convolution attention channel weighted network MSCN and the bidirectional long short-term memory network Multi_SAB based on multi-head self-attention mechanism were combined respectively, so that the model can further optimize the feature extraction from the spatial and temporal relationship sequences of semantic features. Finally, TEXTAFF, an improved attention fusion mechanism for text, was used in the intelligent fusion stage of features. The experimental results indicated that the Font_MBAFF model can effectively compensate for the lack of feature words in short texts, optimizing text feature extraction and feature fusion. The accuracy of semantic matching reached 96.42%. Compared with five other semantic matching models, including MaLSTM, BiLSTM, BiLSTM_Self-attention, TEXTCNN_Attention, and Sentence-BERT, the Font_MBAFF model demonstrated significant advantages, achieving a correctness rate that was at least 2.07 percentage points higher. Furthermore, the model proved resilient in experiments with datasets of different sizes, showing rapid response times during testing. Font_MBAFF deep learning model exceled at determining the similarity of Chinese agricultural short texts.

    参考文献
    相似文献
    引证文献
引用本文

金宁,郭宇峰,渠丽娜,缪祎晟,吴华瑞.基于特征增强的农业短文本语义智能匹配方法研究[J].农业机械学报,2025,56(5):395-404. JIN Ning, GUO Yufeng, QU Li’na, MIAO Yisheng, WU Huarui. Exploration of Intelligent Semantic Matching Technique for Agricultural Short Texts Utilizing Feature Enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):395-404.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码