基于改进YOLO v8的轻量化棉铃识别模型与产量预测方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新一代人工智能国家科技重大专项(2022ZD0115803)、国家重点研发计划项目(2022YFD2002400)和兵团科技攻关计划项目(2023AB014)


Lightweight Cotton Boll Detection Model and Yield Prediction Method Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单株总铃数是棉花重要的表型性状之一,也是种植者估算棉花产量的重要参考因素。因此,从真实复杂的棉田图像中高效准确地识别棉花,对于确保棉花产业生产的经济效益和增强农业管理至关重要。然而,许多现有的卷积神经网络在棉花识别方面优先考虑准确性,缺乏了对识别效率的关注。因此,以脱叶期新疆密植棉花为对象,提出了一种改进的轻量化YOLO(IML-YOLO)棉铃快速识别模型。IML-YOLO模型结合了轻量化卷积特征提取和YOLO模型实时快速识别的优势,构建了一种全新的RepGhostCSPELAN轻量化模块,同时为了降低由轻量化带来的模型识别精度下降的问题,结合CAHSFPN特征融合提高对不同尺度棉铃的识别精度,还提出了一种Focaler-MPDIoU损失函数,有效提高了模型的识别精度。通过消融试验和可解释性分析证实了这些设计的有效性和显著性。与基准YOLO v8n模型相比,IML-YOLO模型在浮点运算次数、模型内存占用量和参数量方面分别显著降低了32.1%、47.5%和50%,同时平均精确度提升了10.1个百分点。将IML-YOLO模型应用于棉花产量预测,平均相对误差为7.22%。该模型为棉铃检测算法与产量预测提供了新途径,为棉花智能化管理提供了技术支持。

    Abstract:

    Cotton boll count is a critical phenotypic trait for estimating cotton yield and plays a vital role in precision agricultural management. However, accurately detecting cotton bolls in densely planted fields remained challenging due to complex backgrounds, occlusion, and varying illumination conditions. High-resolution UAV imagery was employed to capture cotton field scenes in a densely planted area of Xinjiang. A comprehensive dataset was developed through image segmentation and augmentation techniques, ensuring diverse representations of field conditions. To address the trade-off between detection accuracy and computational efficiency, an improved lightweight detection model IML-YOLO was proposed. The model integrated a novel GRGCE module that combined efficient ghost convolution with a RepGhostCSPELAN structure for feature extraction, a CAHSFPN feature fusion mechanism to enhance multi-scale representation, and a Focaler-MPDIoU loss function to refine localization accuracy. Extensive experiments demonstrated that IML-YOLO reduced computational complexity by 32.1%, decreased model size by 47.5%, and lowered parameter count by 50% compared with that of the baseline YOLO v8n, while boosting mean average precision by 10.1 percentage points. Furthermore, when applied to cotton yield prediction, the model achieved an average relative error of only 7.22%. These findings indicated that the proposed IML-YOLO model and yield prediction methodology can offer an effective solution for real-time cotton boll detection and significantly contribute to the advancement of intelligent cotton management.

    参考文献
    相似文献
    引证文献
引用本文

刘祥,项若雪,班成龙,田敏,谭明天,黄凯文.基于改进YOLO v8的轻量化棉铃识别模型与产量预测方法研究[J].农业机械学报,2025,56(5):130-140. LIU Xiang, XIANG Ruoxue, BAN Chenglong, TIAN Min, TAN Mingtian, HUANG Kaiwen. Lightweight Cotton Boll Detection Model and Yield Prediction Method Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):130-140.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码