无人机冠层3D时序动态建模驱动棉花生物量高精度反演研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新疆维吾尔自治区重点研发计划项目(2024B02004)、国家棉花产业技术体系项目(CARS-15-12)、国家重点研发计划项目(2024YFD2300604)、中央引导地方项目(ZYYD2024CG23)、 新疆农业科学院农业科技创新稳定支持计划项目(xjnkywdzc-2023007)、新疆“天山英才”计划“青年拔尖人才”项目和新疆 “天山英才”计划“棉花轻简高效栽培技术创新团队”项目(2023TSYCTD004)


UAV-driven 3D Spatiotemporal Canopy Modeling Enhanced High-accuracy Cotton Biomass Retrieval
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    地上生物量(AGB)精准估算是作物生长监测与精准农业决策的关键技术。针对传统无人机(UAV)遥感方法在棉花AGB估算中存在的双重局限——基于植被指数(VIs)的模型易受冠层光谱饱和效应干扰,且难以量化冠层三维结构动态与AGB累积的时空异质性,本文融合UAV三维点云空间解析与冠层覆盖度时序特征,构建了基于株高×冠层覆盖度(PH×CC)的多维度估算模型。通过设计对比实验框架,评估了PH×CC模型与4种模型(VIs结合随机森林(RF)、梯度提升(GB)、支持向量机(SVM)及反向传播神经网络(BPNN))的性能差异。结果表明:PH×CC模型在测试集上表现出显著优势,其估算精度(决定系数R2=0.93,均方根误差(RMSE)为15.30g/m2)较最优传统模型(RF:R2=0.76,RMSE为23.35g/m2)提升22.3%(P<0.01)。机理分析表明,PH×CC参数通过协同表征PH垂直延伸与冠幅水平扩展的动态耦合关系,可解析83%的冠层结构变异(传统VIs模型仅57%),显著提升了模型对AGB-结构互作机制的解释能力。研究为突破无人机农情监测中“光谱-结构”信息融合的技术瓶颈提供了新方法,同时为解析棉花冠层生长动态的生物学机制提供了可量化的建模工具。

    Abstract:

    Accurate above ground biomass (AGB) estimation is a key technology for crop growth monitoring and precision agriculture decision making. Aiming to address the two limitations of traditional unmanned aerial vehicle (UAV) remote sensing methods in cotton AGB estimation—models based on vegetation indices (VIs) were susceptible to the interference of canopy spectral saturation effects, and it was difficult to quantify the spatio-temporal heterogeneity of the dynamics of three-dimensional canopy structure and AGB accumulation—the spatial analysis of three-dimensional UAV point clouds and the temporal characteristics of canopy cover were integrated to construct a multi-dimensional estimation model based on plant height×canopy cover (PH×CC). By designing a comparative experimental framework, the performance differences between the PH×CC model and four types of traditional models were investigated: VIs combined with random forest (RF), gradient boosting (GB), support vector machine (SVM) and backpropagation neural network (BPNN) were systematically evaluated. The results showed that the PH×CC model had significant advantages on the test set. Its coefficient of determination of estimation accuracy (R2) was 0.93, and the root mean square error (RMSE) was 15.30g/m2, which was an improvement of 22.3% compared with that of the optimal traditional model (RF: R2=0.76, RMSE was 23.35g/m2) (P<0.01). The mechanism analysis showed that the PH×CC parameters can analyze 83% of the variation in canopy structure (only 57% for the traditional VIs model) by synergistically representing the dynamic coupling relationship between the vertical expansion of PH and the horizontal expansion of canopy width, significantly improving the model’s ability to explain the interaction mechanism between AGB and structure. The research result can provide a method to overcome the technical bottleneck of “spectral-structural” information fusion in UAV agricultural situation monitoring, and at the same time it can provide a quantifiable modelling tool to analyze the biological mechanism of cotton canopy growth dynamics.

    参考文献
    相似文献
    引证文献
引用本文

胡正东,汤秋香,樊世语,鲍龙龙,古丽达娜·沙勒山,林涛.无人机冠层3D时序动态建模驱动棉花生物量高精度反演研究[J].农业机械学报,2025,56(5):103-110. HU Zhengdong, TANG Qiuxiang, FAN Shiyu, BAO Longlong, GULDANA Sarsen, LIN Tao. UAV-driven 3D Spatiotemporal Canopy Modeling Enhanced High-accuracy Cotton Biomass Retrieval[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):103-110.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码