基于APSIM的新疆棉花生长与产量动态预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新疆维吾尔自治区重大科技专项(2022A02011-2)、自治区高校基本科研业务费科研项目(XJEDU2024P031)、新疆农业大学作物学科研项目(XNCDKY2023002)和丝绸之路经济带创新驱动发展试验区乌昌石国家自主创新示范区科技发展计划项目(2023LQJ03)


Dynamic Predictions of Cotton Growth and Yield in Xinjiang Based on APSIM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用基于过程的棉花生长动态模型,精确定量模拟新疆棉田生物量积累和产量形成过程,可为智慧农业决策提供技术支撑。基于APSIM-Cotton模型构建了融合气象数据的棉花生长和产量动态预测方法。首先通过2023—2024年田间试验数据校准模型参数,其次运用气候相似年方法构建生长季气象数据,然后融合ECMWF短期天气预测产品(Open Data)进行未来9d棉花生长动态模拟,最终实现全生育期内棉花产量滚动预测。结果表明,APSIM-Cotton能够准确地模拟昌吉地区不同播种密度(9~27株/m2)下的棉花生育期(NRMSE为5.18%)、生物量(NRMSE为19.60%)和产量(NRMSE为6.08%);基于短期气象预测产品的棉花生物量预测在1~3d内精度最高(NRMSE为1.3%),随预报时效延长,9d预测误差升至3.24%;通过气象数据融合(即历史气象数据、短期天气预报与历史气候相似年型数据的动态拼接)可以在全生育期内预测当季棉花产量,使用18个最佳相似年型数量的预测误差最低,产量预测误差整体稳定在4%以内,但播种后90~115d预测误差波动较大(最大相对误差可达10%),因此该时段的预测结果需谨慎使用。

    Abstract:

    A process-based cotton growth model could precisely and dynamically simulate the biomass accumulation and yield formation of cotton, so as to provide technical support for smart agricultural decision-making. A dynamic prediction method for cotton growth and yield was developed by integrating meteorological data with the APSIM-Cotton model. Firstly, model parameters were calibrated based on field trial data (2023—2024). Secondly, short-term weather forecasts (ECMWF Open Data) were incorporated for 9d growth simulations. Thirdly, climate analogue years were used to construct seasonal meteorological datasets to enable the dynamic yield prediction throughout the growing season of cotton. The results showed that the APSIM-Cotton model could accurately simulate the phenology dates (NRMSE was 5.18%), biomass (NRMSE was 19.60%), and yields (NRMSE was 6.08%) of cotton under various planting densities (9~27 plants/m2) in Changji, Xinjiang. Short-term biomass predictions achieved the highest accuracy within 1~3d (NRMSE was 1.3%), then the errors were increased to about 3.24% at a 9d forecast. Integrated meteorological data (the dynamic integration of historical meteorological data, short-term weather forecasts, and historical climate analog year data) enabled seasonal yield prediction. Using 18 optimal analogue years minimized prediction errors, stabilizing yield forecast errors below 4%. However, prediction accuracy fluctuated significantly between 90d and 115d after sowing (maximum relative error was 10%), which necessitated cautious application of the prediction results during this period.

    参考文献
    相似文献
    引证文献
引用本文

陈柏青,张悦,王科,吕智怡,陈茂光,汤秋香.基于APSIM的新疆棉花生长与产量动态预测方法[J].农业机械学报,2025,56(5):82-90. CHEN Baiqing, ZHANG Yue, WANG Ke, Lü Zhiyi, CHEN Maoguang, TANG Qiuxiang. Dynamic Predictions of Cotton Growth and Yield in Xinjiang Based on APSIM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):82-90.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-10
  • 出版日期:
文章二维码