基于XGBoost-SHAP的奶牛热应激预测与可解释性研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

财政部和农业农村部:国家现代农业产业技术体系项目( CARS36)和国家重点研发计划项目(2023YFD2000702)


XGBoost-based Heat Stress Prediction of Dairy Cows and SHAP-based Model Interpretation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高奶牛热应激预测模型的准确性和可解释性,本研究采用奶牛红外体表温度和热应激潜在影响因子作为特征,基于极限梯度提升算法(XGBoost)构建个体热应激预测模型,并引入基于Shapley值的可加性特征归因算法(SHapley Additive exPlanations,SHAP)解释预测结果。选取了躯干、前乳(UD)、脸部以及眼部的最高温度(IRTmax)和平均温度(IRTave)作为体表温度变量,并结合环境参数和奶牛相关变量构建了特征子集。结果显示,热应激情况下,奶牛4个部位的IRTmax和IRTave均显著高于无热应激情况(p<0.01)。对比随机森林、自适应提升和梯度提升树模型,结果表明,使用前乳平均温度(IRTave_UD)作为输入特征,并经过网格搜索优化的XGBoost模型在预测奶牛热应激方面表现最佳,其准确率为80.8%,F1值为79.2%,ROC曲线下面积(AUC)为0.873。SHAP分析表明,前乳平均温度(IRTave_UD)与热应激发生呈正相关,而泌乳天数与其呈负相关,这两者可作为奶牛热应激识别的关键指标。研究结果可为奶牛舍夏季精准降温管理提供技术支持和参考。

    Abstract:

    Aiming to enhance the accuracy and interpretability of current heat stress prediction models for dairy cows, the extreme gradient boosting algorithm (XGBoost) was employed by using infrared body surface temperature and potential influencing factors. A Shapley value-based method, SHAP, was introduced to interpret the prediction outcomes. The maximum temperature (IRTmax) and average temperature (IRTave) from the trunk, fore udder (UD), face, and eyes were selected as body surface temperature variables, and environmental parameters and cow-specific variables were integrated to create a feature subset. The findings revealed that under heat stress conditions, the IRTmax and IRTave of the four body parts were significantly higher than that under non-heat stress conditions (p<0.01). Among the ensemble models compared, i.e., random forest, adaptive boosting, and gradient boosting decision trees, the XGBoost model, optimized through grid search and using fore udder infrared temperature (IRTave_UD) as a key feature, demonstrated the highest accuracy in predicting heat stress, achieving 80.8% accuracy, an F1 score of 79.2%, and an area under the ROC curve (AUC) of 0.873. SHAP analysis indicated that the average infrared temperature of the fore udder (IRTave_UD) positively correlated with heat stress likelihood, while lactation days showed a negative correlation. These two indicators were crucial for identifying heat stress in cows. The research findings can provide valuable technical support for precise cooling management in dairy barns during the summer season.

    参考文献
    相似文献
    引证文献
引用本文

严格齐,焦洪超,林海,李浩,施正香,王朝元.基于XGBoost-SHAP的奶牛热应激预测与可解释性研究[J].农业机械学报,2025,56(4):408-414. YAN Geqi, JIAO Hongchao, LIN Hai, LI Hao, SHI Zhengxiang, WANG Chaoyuan. XGBoost-based Heat Stress Prediction of Dairy Cows and SHAP-based Model Interpretation[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):408-414.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码