基于FCM-SimCC的猪只面部关键点定位方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金项目(ZR2022MC152)和山东省重点研发计划项目(2018GGX104012)


Pig Facial Landmark Detection Method Based on FCM-SimCC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着生猪养殖业向规模化和集约化转型,非侵入式个体识别技术对于追踪溯源、食品安全、疾病控制等方面至关重要,而猪只面部关键点定位技术是实现猪只非侵入式个体识别的前提。本研究基于SimCC关键点定位算法提出一种猪只面部关键点定位模型FCM-SimCC,使用FasterNet代替原算法的CSPDarkNet作为特征提取网络;通过在FasterNet中嵌入CA注意力机制,提高模型对长距离特征的捕获能力;使用MLT自适应权重多任务损失函数联合KL散度损失函数与Wing Loss损失函数对模型进行监督。在包含多个猪只品种、多种面部姿态的4861幅图像的数据集上进行实验,结果表明本研究模型平均精度均值、50%平均精度、75%平均精度分别为76.12%、93.44%、83.25%,相比原模型分别提升3.14、1.77、4.47个百分点,浮点运算量为2.79×109,参数量为1.38×107,浮点运算量减少38.68%,参数量减少20.16%。并与DarkPose、HRNet、YOLO X-Pose等主流关键点定位方法进行对比,实验结果表明FCM-SimCC模型能够在较低的浮点运算量与较少模型参数量的基础上实现快速精准的猪只面部关键点定位,为猪只面部关键点定位及后续的猪只个体身份识别等提供技术支持。

    Abstract:

    With the transformation of pig breeding industry to largescale and intensive, non-intrusive individual identification technology is very important for traceback, food safety, disease control and scientific breeding. Pig facial landmark detection serves as a fundamental requirement for achieving non-invasive pig identification. A pig facial landmark detection model named FCM-SimCC was introduced, building upon the SimCC landmark detection algorithm. The model replaced CSPDarkNet with FasterNet for feature extraction and incorporated the CA attention mechanism within FasterNet to enhance the capture of long-distance features. Supervision of the model was achieved through the MLT adaptive weight multi-task loss function combined with KL divergence loss and Wing Loss. Test on a dataset of 4861 images was done, representing a variety of pig breeds and facial poses, the FCM-SimCC model attained mean average precision, 50% average precision, and 75% average precision of 76.12%, 93.44%, and 83.25%, respectively. These results indicated improvements of 3.14, 1.77, and 4.47 percentage points over the original model, with a reduced computational demand to 2.79×109 and a parameter count of 1.38×107, marking a 38.68% decrease in floating-point operations and a 20.16% reduction in parameters. When compared with mainstream landmark detection methodologies such as DeepPose, HRNet, and YOLO X-Pose, the FCM-SimCC model showcased its ability to provide rapid and precise pig facial landmark detection with lower computational resources and fewer parameters, offering valuable insights for similar tasks in pig facial landmark detection and individual pig identification.

    参考文献
    相似文献
    引证文献
引用本文

张惠莉,王光远,员玉良,代晨龙,滕飞,任景龙.基于FCM-SimCC的猪只面部关键点定位方法[J].农业机械学报,2025,56(4):397-407. ZHANG Huili, WANG Guangyuan, YUN Yuliang, DAI Chenlong, TENG Fei, REN Jinglong. Pig Facial Landmark Detection Method Based on FCM-SimCC[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):397-407.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码