基于TD-BlendMask的复杂环境三七叶片病害实例分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省科技厅重点项目(202201AS070034、202305AM070006)和云南省高校重点实验室项目(KKPS201923009)


TD-BlendMask-based Approach for Instance Segmentation of Panax notoginseng Leaf Diseases in Complex Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对三七叶片病害中灰霉病与疫病表型特征高度相似、炭疽病等病害病灶区域小且形态复杂导致的图像分割特征提取困难与识别精度不足问题,本文提出了Transformer-DCNv2-BlendMask(TD-BlendMask)三七叶片多类别病害图像分割模型。首先,为了解决三七叶病害视觉相似问题,引入了Transformer编码器来捕获多种病害类别的长距离依赖性。其次,可变形卷积网络(DCNv2)通过引入偏移量,使其在分割各种复杂形状的病害方面具有更好的适应性。最后,与其他常用的实例分割模型(如BoxInst、ConInst、SOLOv2、Mask R-CNN和YOLO v8-seg)在包含多类别疾病的三七叶片病害数据集上进行比较。实验结果表明,所提出模型精确度(AP)达到86.14%,比基准模型高3.17个百分点,相比经典的Mask R-CNN模型高出4.37个百分点。在灰霉病、疫病和炭疽病类别上,分别提高0.16、4.32、4.46个百分点。因此,本文所提出的方法为在复杂环境中准确分割形状复杂且视觉高度相似的病害提供了有效解决方案,有助于实现病害准确量化。

    Abstract:

    Under practical Panax notoginseng cultivation scenarios, due to the visual similarities between diseases such as gray mold and plague, as well as small individual targets with complex and variable shapes of diseases such as anthracnose under natural conditions, current methods face a difficult problem of P.notoginseng leaf disease segmentation. A modified Transformer-DCNv2-BlendMask model for P. notoginseng leaf multicategory diseases image segmentation was proposed. To deal with the visual similarity problem and variable shape targets appeared on P. notoginseng leaf disease, a Transformer encoder to capture long-distance dependencies for multiple disease categories was introduced. And the deformable convolution networks v2 (DCNv2) showed a better adaptability of convolutional networks by enabling free-form deformation of the convolution to segment disease with various shape. The model and other instance segmentation models such as BoxInst, ConInst, SOLOv2, Mask R-CNN and YOLO v8-seg on the P. notoginseng leaf disease dataset, which contains multi-category diseases were compared. The results demonstrated the competitive performance of our model, achieving a average precision (AP) of 86.14%, outperforming the baseline BlendMask model by 3.17 percentage points and the previously best-performing Mask R-CNN by 4.37 percentage points. It also exceeded the baseline by 0.16 percentage points, 4.32 percentage points and 4.46 percentage points for the gray mold, plague and anthracnose categories, respectively. Thus, our method provides a robust solution for segmenting shape-variable and visually similar diseases in complex environments, helping to achieve accurate quantification of diseases.

    参考文献
    相似文献
    引证文献
引用本文

杨启良,陈成,雷炼,周宁珊,杨玲.基于TD-BlendMask的复杂环境三七叶片病害实例分割方法[J].农业机械学报,2025,56(4):375-386. YANG Qiliang, CHEN Cheng, LEI Lian, ZHOU Ningshan, YANG Ling. TD-BlendMask-based Approach for Instance Segmentation of Panax notoginseng Leaf Diseases in Complex Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):375-386.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码