基于深度增强与特征抗噪的夜间串番茄成熟度识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省智能农机装备创新研发项目(202404710710436)


Tomato Cluster Ripeness Recognition at Night Based on Depth Enhancement and Feature Noise Reduction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人自动化采收是温室串番茄收获作业的有效解决方案,其中串番茄成熟度是机器人采摘决策的重要依据。本文利用Deep White-Balance与Zero-DCE深度神经网络分别实现串番茄图像偏色修正和阴影细节增强,改善补光环境与夜间环境下图像偏色与局部弱光等问题。同时引入深度残差收缩网络,在YOLO v5s中构建RSBottleneck-CW模块对特征图进行软阈值化处理,抑制图像中的噪声干扰。实验结果表明,在夜间环境下,图像经Zero-DCE算法增强处理后,检测模型召回率达到0.924,捕获到了更多的番茄果实与果串目标。在补光环境下,图像经过Deep White-Balance与Zero-DCE联合处理后恢复了真实色彩并增强了纹理细节,检测模型平均精度均值(mAP)达到0.849,相比于处理前提升0.038。而嵌入RSBottleneck-CW模块的YOLO v5s对特征图噪声表现出了很强的适应性能,不管是否对图像进行深度增强,其mAP与F1值始终比原始YOLO v5s更高,夜间环境下mAP和F1值最高分别为0.902、0.844,补光环境下mAP和F1值最高分别为0.868、0.817。检测模型检测出果实与果串后,利用边框匹配算法可以获取到串番茄最终的成熟度。当串番茄成熟度为90%~100%时,夜间环境与补光环境下串番茄成熟度识别平均绝对误差分别为1.837%、1.067%,可为串番茄采摘机器人夜间自动采收作业提供决策依据。

    Abstract:

    Robotic automated harvesting proves to be an efficient solution for greenhouse tomato cluster harvesting operations. The ripeness of tomato clusters stands as a vital criterion influencing the decision-making process for the harvesting robot. Aiming to employ Deep White-Balance and Zero-DCE deep neural networks for color cast correction and shadow detail enhancement in tomato images to enhance image quality by addressing color cast issues and improving local illumination in both fill light and night environments, the concept of the deep residual shrinkage network was introduced, incorporating the RSBottleneck-CW module into YOLO v5s. This module conducted soft threshold processing on the feature map to effectively suppress noise interference in the image. Experimental results demonstrated that in the night environment, after enhancing the image solely with the Zero-DCE algorithm, the recall of the detection model reached 0.924, capturing more tomato fruits and trusses. In a supplementary light environment, the image underwent joint processing with Deep White-Balance and Zero-DCE to restore authentic colors and enhance texture details. This resulted in the detection model achieving an mAP of 0.849, reflecting a 0.038 increase compared with that of the before processing. The YOLO v5s integrated with the RSBottleneck-CW module exhibited robust adaptability to feature map noise. Irrespective of whether the image underwent depth enhancement, its mAP and F1-Score consistently surpassed those of the original YOLO v5s. In the nighttime environment, the highest recorded mAP and F1-Score values were 0.902 and 0.844, respectively. Similarly, in the supplementary light environment, the peak mAP and F1-Score values reached 0.868 and 0.817, respectively. After the detection model detected the fruits and trusses, the final ripeness level of the tomato clusters were determined by using the bounding boxes aligning algorithm. In the ripeness stage of tomato clusters ranged from 90% to 100%, the average absolute errors in ripeness recognition under nighttime and supplementary light conditions were 1.837% and 1.067%, respectively. These findings can serve as decision-making criteria for night automated harvesting operations of tomato-picking robots.

    参考文献
    相似文献
    引证文献
引用本文

王新,唐灿,朱建新,郭彩平,刘艺豪,王书茂.基于深度增强与特征抗噪的夜间串番茄成熟度识别方法[J].农业机械学报,2025,56(4):363-374. WANG Xin, TANG Can, ZHU Jianxin, GUO Caiping, LIU Yihao, WANG Shumao. Tomato Cluster Ripeness Recognition at Night Based on Depth Enhancement and Feature Noise Reduction[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):363-374.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码