基于中红外光谱与机器学习的生物炭表面碳氧元素及基团含量预测模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31971807)


Modeling of Carbon and Oxygen Elements and Groups on Biochar Surface Based on Mid-infrared Spectroscopy and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现生物炭表面碳氧元素与活性基团的高精快速预测,基于课题组积累的120组生物炭样品,建立了包含生物炭中红外光谱和表面碳氧元素及其赋存形态定量表征信息的数据集;采用支持向量机(SVM)、随机森林(RF)机器学习智能建模方法,结合区间偏最小二乘法(IPLS)和主成分分析法(PCA)等特征筛选策略,构建了IPLS+RF、IPLS+SVM、PCA+RF、PCA+SVM共4种预测模型,实现了表面碳氧元素含量(S_C、S_O)以及8种碳氧赋存形态共计10个预测目标的定量快速预测。其中,碳氧赋存形态有来自C1s能谱的C=C、C—C、C—O、C=O、O=C—O共5种形态(C_C=C、C_C—C、C_C—O、C_C=O、C_O=C—O)以及来自O1s能谱的C=O、C—O、O=C—O共3种形态(O_C=O、O_C—O、O_O=C—O)。研究结果表明:生物炭表面碳元素的主要赋存形态为C_C=C、O_C—O,生物炭表面氧元素的主要赋存形态为C_C—O、C_C=O、C_O=C—O以及O_C=O;特征波段4000~3464cm-1和1588~650cm-1均包含与生物炭表面碳氧元素含量及其赋存形态高度相关的特征信息,但1588~650cm-1蕴含的信息更为丰富;从模型预测精度来看,IPLS+RF、IPLS+SVM、PCA+RF、PCA+SVM这4种预测模型均具有良好的预测能力,IPLS+SVM和PCA+SVM尤为突出,对10个预测目标的最优模型决定系数均在093以上;但从模型稳定性和泛化能力来看,C_C—C、C_O=C—O、O_C=O、O_C—O还有待进一步提升。

    Abstract:

    In order to achieve high-precision and rapid prediction of carbon and oxygen elements and active groups on the surface of biochar, a data set containing quantitative characterization information of midinfrared spectroscopy and surface carbon and oxygen elements and their occurrence forms was established based on 120 groups of biochar samples accumulated by the research group. Using support vector machine (SVM) and random forest (RF) machine learning intelligent modeling methods, combined with interval partial least squares (IPLS) and principal component analysis (PCA) and other feature selection strategies, four prediction models of IPLS+RF, IPLS+SVM, PCA+RF and PCA+SVM were constructed, and the quantitative and rapid prediction of surface carbon and oxygen content (S_C,S_O) and eight carbon and oxygen occurrence forms, a total of ten prediction targets, was realized. Among them, there were five forms of C=C, C—C, C—O, C=O, O=C—O from the C1s energy spectrum and three forms of C=O, C—O, O=C—O from the O1s energy spectrum. The results showed that the main occurrence forms of carbon on the surface of biochar were C_C=C and O_C—O, and the main occurrence forms of oxygen on the surface of biochar were C_C—O, C_C=O, C_O=C—O and O_C=O; the characteristic bands of 4000~3464cm-1 and 1588~650cm-1 both contained characteristic information highly related to the content and speciation of carbon and oxygen on the surface of biochar, but the information contained in 1588~650cm-1 was more abundant. From the perspective of model prediction accuracy, the four prediction models of IPLS+RF, IPLS+SVM, PCA+RF and PCA+SVM all had good prediction ability, especially IPLS+SVM and PCA+SVM. The coefficient of determination of the optimal model for ten prediction targets was above 0.93; however, from the perspective of model stability and generalization ability, C_C—C, C_O=C—O, O_C=O, O_C—O still needed to be further improved.

    参考文献
    相似文献
    引证文献
引用本文

曹红亮,王盼,王卓超,杨争鸣,马家敏,徐洋.基于中红外光谱与机器学习的生物炭表面碳氧元素及基团含量预测模型研究[J].农业机械学报,2025,56(4):344-352. CAO Hongliang, WANG Pan, WANG Zhuochao, YANG Zhengming, MA Jiamin, XU Yang. Modeling of Carbon and Oxygen Elements and Groups on Biochar Surface Based on Mid-infrared Spectroscopy and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):344-352.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码