基于高贴合旋转框的复杂环境玉米株心定位方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD1500404)


Corn Plant Core Localization Method Based on High-fitting Rotated Bounding Boxes for Complex Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决玉米株心定位困难及定位精度低的问题,针对复杂自然环境玉米叶冠数据,本文开发了一种基于高贴合旋转框的玉米株心定位方法,并提出了一种能有效减少边缘精度损失的标注策略。该定位方法首先通过使用高精度标注策略和构建具有自适性的轻量化渐进特征金字塔网络LC-AFPN,得到LCA-YOLO v7OBB玉米叶冠目标检测算法,然后利用色彩空间滤波算法分割叶冠区域,并使用间隙填充算法提升图像质量,最后利用图像矩原理准确计算株心坐标。实验结果表明,模型抗干扰能力强,株心定位准确度高。LCA-YOLO v7OBB模型平均检测精度可达85.19%,精确率和召回率达到91.83%和83.04%。与Rotated-FasterRCNN等12种旋转目标检测模型相比,LCA-YOLO v7OBB在准确性和召回率等综合性能方面表现最佳。模型泛化能力强,在自建黄瓜、茄子2种数据集上进行验证,其平均精度、精确率、召回率和F1值均有明显提升。本文方法能够为精准施肥、农机视觉导航等提供理论基础和技术支持。

    Abstract:

    A corn plant core localization algorithm was developed based on high-fit oriented bounding boxes for complex natural environment corn canopy data, and a labeling strategy was proposed that can effectively reduce the lack of edge precision. To address the issues of insufficient labeling accuracy and weak multi-scale feature extraction in traditional object detection networks, a novel high-precision labeling strategy for YOLO v7OBB was proposed and an innovative learning convergent asymptotic feature pyramid network (LC-AFPN) was developed. Additionally, a color space filtering algorithm was used for canopy segmentation, and a gap-filling algorithm improved image quality. Spatial moments were utilized to accurately calculate the coordinates of the plant core, leading to the learning convergent asymptotic YOLO v7OBB network (LCA-YOLO v7OBB) for corn canopy targets detection. Validation on a complex corn field dataset revealed that LCA-YOLO v7OBB offered strong anti-interference capability and high plant core localization accuracy, with an average accuracy of 85.19% and precision and recall rates of 91.83% and 83.04%, respectively. Compared with 12 other rotating object detection networks, this model demonstrated the best overall performance. Moreover, validation on custom cucumber and eggplant datasets further confirmed its robust generalization ability. This model provided a theoretical basis and technical support for applications such as precision fertilization and agricultural machinery visual navigation.

    参考文献
    相似文献
    引证文献
引用本文

徐艳蕾,郭丽丽,黄东岩,周阳,李陈孝.基于高贴合旋转框的复杂环境玉米株心定位方法[J].农业机械学报,2025,56(4):129-138. XU Yanlei, GUO Lili, HUANG Dongyan, ZHOU Yang, LI Chenxiao. Corn Plant Core Localization Method Based on High-fitting Rotated Bounding Boxes for Complex Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):129-138.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码