旱田智能化机械除草技术与装备研究进展
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD1500401)


Research Progress on Intelligent Mechanical Weeding Technology and Equipment in Dry Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前传统化学和物理除草方法面临环境污染和效率低等问题,因此智能化机械除草技术成为一种可行的替代方案。本文系统阐述了旱田智能机械除草机工作原理与关键技术,结合国内外研究现状与应用案例,重点探讨了作物行检测、避苗控制以及多传感器融合等核心环节。智能除草机基于高精度图像识别与深度学习算法,实现杂草精准定位与识别,并利用机械臂或其他执行机构完成高效除草作业,不仅有效降低了对化学除草剂的依赖,且可显著提高作物产量,兼具突出的环境与经济效益。然而,田间环境的复杂性和成本高昂等限制了其广泛应用。进一步探讨了作物行检测、避苗控制以及多传感器融合等旱田智能机械除草系统的关键技术,强调了提升系统实时性和除草精准度的必要性,并提出未来发展方向:多传感器融合、模块化设计及适应多样化作物环境个性化解决方案,以推动农业可持续发展。

    Abstract:

    With increasing global environmental and economic pressures on agriculture, traditional chemical and physical weed control methods face significant challenges, such as environmental pollution and inefficiency in operations. Intelligent mechanical weeding technology has emerged as a sustainable alternative, effectively addressing these challenges. This review examined the research progress on intelligent mechanical weeding machines designed specifically for dryland environments, focusing on their working principles, key technologies, practical applications, and development status both domestically and internationally. Intelligent weeding machines increasingly utilized high-precision image recognition and advanced deep learning algorithms to achieve accurate weed identification and precise positioning. These systems used mechanical arms or other units to perform efficient and targeted weeding operations, enhancing crop yield and reducing reliance on chemical herbicides while providing substantial environmental and economic benefits. However, challenges such as variable field conditions, high equipment costs, and technical limitations hindered widespread adoption. This review also explored essential technologies in dryland intelligent mechanical weeding, including crop row detection, seedling-avoidance control mechanisms, and multi-sensor integration, emphasizing the importance of improving real-time processing and precision in weeding operations. Future directions included multi-sensor fusion, modular design, and adaptations for various crop environments to enhance the practicality and adoption of intelligent weeding technologies in agriculture.

    参考文献
    相似文献
    引证文献
引用本文

张馨悦,王庆杰,王超,徐征鑫,卢彩云,何进,李洪文.旱田智能化机械除草技术与装备研究进展[J].农业机械学报,2025,56(4):22-41,71. ZHANG Xinyue, WANG Qingjie, WANG Chao, XU Zhengxin, LU Caiyun, HE Jin, LI Hongwen. Research Progress on Intelligent Mechanical Weeding Technology and Equipment in Dry Field[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):22-41,71.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-10
  • 出版日期:
文章二维码