谐波减速器MDBO-CNN-LSTM剩余使用寿命预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52365064)、内蒙古关键技术攻关项目(2021GG0255)、内蒙古自治区高等学校创新团队发展计划项目(NMGIRT2213)、内蒙古自治区直属高校基本科研业务费项目 ( ZTY2023005、 JY20230043 )、 内蒙古自然科学基金项目(2023LHMS05018、2023LHMS05017)、内蒙古自治区高等学校青年科技英才支持计划项目(NJYT23043)和内蒙古自治区“英才兴蒙”工程团队项目(2025TEL02)


Prediction of RUL of Harmonic Reducer Based on MDBO-CNN-LSTM Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对谐波减速器剩余使用寿命预测退化节点难以选取、退化指标与物理解释性差、预测效果偏差较大等问题,提出了一维堆叠卷积自编码器融合深度卷积嵌入式聚类(SCAE-DCEC)提取退化点,并结合改进蜣螂优化算法(DBO)优化CNN-LSTM的谐波减速器剩余使用寿命预测方法。对振动信号进行一维堆叠卷积自编码器与深度卷积嵌入式聚类,解决了退化节点难以选取、退化指标与预测网络契合度差等难题;构建了基于SPM混沌映射、自适应概率阈值和差分变异扰动的改进蜣螂优化算法,并对其性能进行评估。利用MDBO对CNN-LSTM超参数进行优化,形成MDBO-CNN-LSTM的剩余使用寿命预测模型。在搭建的谐波减速器实验台进行加速寿命实验及预测验证,实验结果表明MDBO-CNN-LSTM训练后预测模型拟合优度明显高于CNN、LSTM、CNN-LSTM、DBOCNN-LSTM网络、直接退化全卷积、直接退化的贝叶斯优化LSTM的RUL预测方法,其预测精度达到91.33%,且该方法对谐波减速器寿命后期退化趋势中的衰退特征具有较强的辨识能力。

    Abstract:

    Aiming to address challenges in predicting the remaining useful life ( RUL) of harmonic drives-such as difficulties in selecting degradation nodes, poor physical interpretability of degradation indicators, and large prediction deviations, a novel approach was proposed. The method combined a one- dimensional stacked convolutional autoencoder ( SCAE) integrated with deep convolutional embedded clustering (DCEC) for degradation point extraction, along with an improved dung beetle optimization (DBO) algorithm to enhance the performance of a CNN-LSTM-based RUL prediction model. The vibration signals were processed by using the SCAE DCEC framework to identify degradation nodes, addressing issues related to the difficulty of node selection and the low compatibility between degradation indicators and the predictive network. Secondly, a modified dung beetle optimization (MDBO) algorithm was developed, incorporating SPM chaotic mapping, adaptive probability thresholds, and differential mutation perturbations, with its performance rigorously evaluated. Thirdly, the MDBO algorithm was applied to optimize the hyperparameters of the CNN-LSTM model, forming the MDBO-CNN-LSTM-RUL prediction model. An accelerated life test and validation experiment were conducted by using a harmonic drive test bench. The experimental results demonstrated that the MDBO CNN LSTM model significantly outperformed CNN, LSTM, CNN-LSTM, DBO-CNN-LSTM, fully convolutional networks, and Bayesian-optimized LSTM models in terms of goodness of fit. The proposed model achieved a prediction accuracy of 91.33% and exhibited superior recognition capability for capturing the degradation trends during the late stages of the lifecycle of harmonic drive.

    参考文献
    相似文献
    引证文献
引用本文

兰月政,刘彪,石超,郭世杰,吕贺,唐术锋.谐波减速器MDBO-CNN-LSTM剩余使用寿命预测[J].农业机械学报,2025,56(2):533-543. LAN Yuezheng, LIU Biao, SHI Chao, GUO Shijie, Lü He, TANG Shufeng. Prediction of RUL of Harmonic Reducer Based on MDBO-CNN-LSTM Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):533-543.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码