赤点石斑鱼氨氮应激行为嵌入式表征研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省重点研发计划项目(2021C02025)、浙江省三农九方项目(2023SNJF077)和温州市农业高新园区开放性项目(KN20210009)


Behavioral Representation for Ammonia-nitrogen Stress of Epinephelus akaara for Embedded System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于应激行为学的赤点石斑鱼应激行为表征是实现赤点石斑鱼氨氮胁迫识别的前提与基础,但现有方法大多依赖于高性能硬件,不利于行为表征方法在养殖现场嵌入式系统上部署和应用。针对这一问题,结合赤点石斑鱼氨氮胁迫环境下活动量减少、躯体痉挛失衡等症状,提出了一种基于轻量化检测跟踪算法的赤点石斑鱼氨氮应激行为表征方法。首先使用GhostV2卷积对YOLOv5s进行轻量化改进,采用AFPN来支持不同维度特征直接融合,消融对比实验结果表明,改进后轻量化模型准确率和召回率分别为94.3%和89.5%,平均精度均值为96.2%,较改进前提高1.6个百分点,模型内存占用量约为轻量化前模型的60%。为了减少在复杂环境中跟踪时赤点石斑鱼ID频繁跳变的问题,本文在Ocsort中嵌入了一个轻量级的外观特征提取网络并在目标关联时将目标的外观相似度矩阵引入总匹配代价矩阵;对比实验结果表明,改进后跟踪算法MOTA和IDF1分别为94.7%和69.3%,比YOLOv5s与OCSORT的检测跟踪算法分别提高3.2、6.7个百分点。最终结合石斑鱼氨氮应激行为学研究结果,选用赤点石斑鱼平均运动速度、躯体失衡石斑鱼数量来表征赤点石斑鱼氨氮应激行为,行为识别准确率为92.2%,可准确检测出赤点石斑鱼是否处于氨氮胁迫环境中。本文的轻量化表征方法可部署到JetsonOrinNano嵌入式系统上,平均运行速度为6f/s,可为工厂化赤点石斑鱼养殖氨氮胁迫的高效实时识别提供技术支撑。

    Abstract:

    The stress behavior representation based on research on ammonia nitrogen stress behavior is the premise and basis for realizing the recognition of ammonia nitrogen stress of Epinephelus akaara. However, most of the existing methods rely on high-performance hardware, which is not conducive to the embedded deployment and application of behavior representation methods in aquaculture. Taking symptoms such as reduced activity and imbalanced body of Epinephelus akaara under stress environment into account, a behavior representation method was proposed to represent the ammonia nitrogen stress behavior of Epinephelus akaara based on lightweight detection and tracking algorithm. In the detection algorithm, GhostV2 convolution was firstly used to lighten the feature extraction network of YOLO v5s. Then asymptotic feature pyramid network was integrated into the neck of YOLO v5s to support direct interactive fusion of different dimensional features. The results of ablation and comparison experiments showed that the accuracy and recall rate achieved 94.3% and 89.5% and mAP@ 0.5 of the lightweight model was 96.2% , which was 1.6 percentage points higher than that of the original model while the model volume was about 60% of that of the original model. In the tracking algorithm, a lightweight ReID network was embeded into Ocsort and the appearance similarity matrix was introduced into the matching cost matrix in target association period. Comparison experiments showed that MOTA and IDF1 of improved tracking algorithm achieved 94.7% and 69.3% , which were 3.2 percentage points and 6.7 percentage points higher than that of the original Ocsort with YOLO v5s. Combined with the research on ammonia nitrogen stress behavior, average velocity and number of imbalanced Epinephelus akaara were selected to characterize the ammonia nitrogen stress behavior of Epinephelus akaara. The accuracy of identifying the behavior of Epinephelus akaara based on the characterization proposed method was 92.2% , which can accurately classify whether the Epinephelus akaara was under ammonia nitrogen stress environment. The lightweight characterization method can be deployed on Jetson Orin Nano embedded system, with an average speed of 6 f / s, providing technical support for efficient and real-time identification of ammonia nitrogen stress in aquaculture.

    参考文献
    相似文献
    引证文献
引用本文

聂鹏程,钱程,汪清平,曾国权,马建忠,刘世晶.赤点石斑鱼氨氮应激行为嵌入式表征研究[J].农业机械学报,2025,56(2):503-510,522. NIE Pengcheng, QIAN Cheng, WANG Qingping, ZENG Guoquan, MA Jianzhong, LIU Shijin. Behavioral Representation for Ammonia-nitrogen Stress of Epinephelus akaara for Embedded System[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):503-510,522.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码