自然环境下柑橘采摘机器人避障规划研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省农机装备补短板核心技术应用攻关项目(HBSNYT202219)、国家重点研发计划项目(2020YFD1000101)、国家柑橘产业技术体系项目(CARS Citrus)和国家数字种植业(果园)创新分中心项目(农规发[2022]10号)


Obstacle Avoidance Planning of Citrus Picking Robot in Natural Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柑橘枝叶果丛生密布、位姿随机生长情况,为了实现对内生交错和枝果层叠的果实安全交互采摘,本文提出了一种柑橘避障采摘方法。为了提高定位精度和采摘效率,将手眼标定问题转换为求解T1X=XT2的问题,完成了相机坐标系到机械臂基坐标系的标定;针对自然环境下柑橘开心树形进行了基于点云密度的树木骨架提取,并通过点密度阈值法对枝干点云进行降噪处理,提高运算速度;利用八叉树地图法进行枝干障碍物地图搭建,通过层次包围盒法拟合机械臂并进行碰撞检测,以时间最优为目标,提出一种符合采摘农艺需求的改进RRT-connect避障规划算法,在RRT-connect算法上引入目标偏置,对采样点进行优选导向。为验证该避障方法的可行性,以标准矮化密植栽培柑橘果园为研究对象,搭建了采摘机器人避障系统。针对自然环境下果树内部和贴近树干生长柑橘果实分别进行多组避障采摘试验。试验结果表明,针对贴近树干生长果实的避障运动时间为9.5s,避障采摘成功率为91%;针对果树内部生长的果实避障运动时间为10.5s,避障采摘成功率为88%。

    Abstract:

    In response to the dense and randomly positioned growth of citrus branches, leaves, and fruits, to achieve safe interactive picking of interlaced and overlapping branches and fruits, a citrus obstacle avoidance picking method was proposed. To enhance the positioning accuracy and picking efficiency, the hand-eye calibration problem was transformed into solving the equation T1X = XT2 , completing the calibration from the camera coordinate system to the base coordinate system of the robotic arm. For the citrus open-center tree shape in the natural environment, tree skeleton extraction based on point cloud density was conducted, and noise reduction processing of the branch and trunk point clouds was performed through the point density threshold method to increase the operation speed. The octree map method was utilized to construct the obstacle map of branches and trunks, and the hierarchical bounding box method was employed to fit the robotic arm and carry out collision detection. With the objective of time optimization, an improved RRT connect obstacle avoidance planning algorithm that conforms to the agricultural requirements of picking was proposed. Target bias was introduced to the RRT connect algorithm for optimizing and guiding the sampling points. To verify the feasibility of this obstacle avoidance method, taking the citrus orchard with standard dwarf and dense planting cultivation as the research object, an obstacle avoidance system for the picking robot was established. Multiple sets of obstacle avoidance picking experiments were respectively conducted for citrus fruits growing inside the fruit tree and close to the trunk in the natural environment. The experimental results indicated that the obstacle avoidance movement time for fruits growing close to the trunk was 9.5 s, and the success rate of obstacle avoidance picking was 91% ;for fruits growing inside the fruit tree, the obstacle avoidance movement time was 10.5 s, and the success rate of obstacle avoidance picking was 88% .

    参考文献
    相似文献
    引证文献
引用本文

鲍秀兰,包有刚,马萧杰,马志涛,任梦涛,李善军.自然环境下柑橘采摘机器人避障规划研究[J].农业机械学报,2025,56(2):420-428. BAO Xiulan, BAO Yougang, MA Xiaojie, MA Zhitao, REN Mengtao, LI Shanjun. Obstacle Avoidance Planning of Citrus Picking Robot in Natural Environment[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):420-428.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码