基于LT-YOLO检测与机器视觉的苹果激光疏花试验台参数优化与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省现代农业产业技术体系果品产业创新团队项目(SDAIT 06 12)和潍坊市科技发展计划项目(2024RKX076)


Parameter Optimization and Testing of Apple Laser Flower Thinning Test Bed Based on LT-YOLO Inspection and Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对苹果花激光疏花技术中的关键参数优化问题,设计了激光疏花试验台。通过正交试验法,优化了试验台高度、激光打击时间及PWM占空比,得到最佳参数组合:激光高度为20cm、打击时间为10s、激光功率(PWM占空比)为50%将达到最佳的疏花效果。针对激光疏花中苹果花识别与定位,提出了LTYOLO(Light weight and targeted you only lookonce)苹果花检测模型,设计了基于ViTBlock的DPRViTBlock模块和基于C2f模块的DPRVBC2f模块,并添加了DPRVBC2f模块和ELA注意力模块,应用于检测骨干和检测头的特征提取,以增强对苹果花的检测性能,验证集中该模型的准确率、召回率和平均精度均值分别为83.16%、82.15%和87.47%,相比YOLOv8模型分别提高5.04、2.12、2.15个百分点,内存占用量为5.26MB,检测速度为128f/s,满足使用时的准确性和实时性的要求。该研究为苹果花疏花技术进一步优化与智能化应用提供了科学依据。

    Abstract:

    Laser flower thinning technology, as an emerging and promising technology in the field of smart orchard management, still faced critical challenges in optimizing laser parameters and achieving precise apple flower detection. Aiming at the optimization of key parameters in apple blossom laser flower thinning technology, a laser flower thinning test stand was designed, and the height of the test stand, the laser striking time and the PWM duty cycle were optimized by the orthogonal test method to obtain the optimal parameter combinations: a laser height of 20 cm,a striking time of 10 s and a laser power(PWM duty cycle) of 50% would achieve the best flower thinning effect. For apple flower identification and localization in laser flower thinning, the lightweight anl targeted-you only look once (LT-YOL0)apple flower detection model was proposed, the DPRVITBlock module based on ViTBlock and the DPRVBC2f module based on the C2f module were designed, and the ELA attention module of the DPRVBC2f module was added,which was applied in the feature extraction of the detection backbone and the detection head to enhance the apple blossom detection performance, validation focused on the accuracy,recall and average mean of the model were 83.16%,82.15% and 87.47%,respectively,compared with that of the YOLO v8 model it was improved by 5.04 percentage points,2.12 percentage points and 2.15 percentage poin1ts,respectively. The model size was 5.26 MB and the detection speed was 128/s,which met the accuracy and real-time requirements for use. The research result can provide a scientific basis for the further optimization and intelligent application of apple flower thinning technology.

    参考文献
    相似文献
    引证文献
引用本文

高昂,吴昆,宋月鹏,任龙龙,马伟,刘一琳.基于LT-YOLO检测与机器视觉的苹果激光疏花试验台参数优化与试验[J].农业机械学报,2025,56(2):393-401. GAO Ang, WU Kun, SONG Yuepeng, REN Longlong, MA Wei, LIU Yilin. Parameter Optimization and Testing of Apple Laser Flower Thinning Test Bed Based on LT-YOLO Inspection and Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):393-401.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码