基于GA-BP的联合收获机小麦含水率检测模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新一代人工智能国家科技重大项目(2021ZD0110902)、国家小麦产业技术体系项目(CARS 03)和山东省重点研发计划项目(2022CXGC010608)


Wheat Moisture Content Prediction Model for Combine Harvester Based on GA-BP Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步提高基于介电特性的联合收获机小麦含水率检测装置模型检测精度和适用范围,本研究以“京冬22号”、“蜀麦1958冶”、“涡麦33”3个品种小麦为研究对象,测量含水率范围为8.41%~21.6%,检测温度范围为5~40℃,容重范围为714.44~777.58kg/m3的小麦相对介电常数。试验结果表明,同一温度条件下,容重越大,相对介电常数越大;在同一容重条件下,相对介电常数会随温度升高而增大,也随含水率升高而变大。采用校正集样本150个,预测集样本42个,基于遗传算法优化BP神经网络(GABP)的方法建立了相对介电常数、温度、容重与小麦含水率的关系模型,模型采用3-5-1结构,最大迭代次数1000次,学习误差阈值1×10-6。校正集R2、RMSE、MAE分别为0.996、0.241%、0.189%;预测集R2、RMSE、MAE分别为0.993、0.295%、0.189%,该模型具有较高的检测精度和稳定性,为不同品种小麦含水率在线检测提供了一种新的检测方法。

    Abstract:

    In order to improve the detection accuracy and applicability of wheat moisture content detection device for combined harvester based on dielectric properties, the wheat moisture content prediction model was established based on GA-BP method. Focusing on three varieties of wheat, namely “Jingdong 22”, “Shumai 1958” and “Womai 33”. The measured range of wheat moisture content was 8.41% to 21.6% , with the detection temperature ranging from 5℃ to 40℃ and the bulk density ranging from 714.44 kg / m 3 to 777.58 kg / m 3 for wheat dielectric constant. The experiment results indicated that at constant temperature conditions, higher bulk density corresponded to a larger dielectric constant. Similarly, under consistent bulk density, the dielectric constant was increased with the increase of temperature and moisture content. To establish the relationship between dielectric constant, temperature, bulk density, and wheat moisture content, a genetic algorithm optimized back propagation neural network (GA-BP) with 150 samples in the calibration set and 42 samples in the prediction set was established. The model, with a 3-5-1 structure, a maximum iteration of 1 000 times, and a learning error threshold of 1×10 - 6 , demonstrated high detection accuracy and stability. The verification set R 2 , RMSE, and MAE values were 0.996, 0.241% , and 0.189% , respectively, while the prediction set returned values were 0.993, 0.295% , and 0.189% . These results underscored the model’s efficacy in providing a method for online moisture content detection in wheat of different varieties.

    参考文献
    相似文献
    引证文献
引用本文

安晓飞,代均益,李立伟,卢昊,尹彦鑫,孟志军.基于GA-BP的联合收获机小麦含水率检测模型研究[J].农业机械学报,2025,56(2):325-332. AN Xiaofei, DAI Junyi, LI Liwei, LU Hao, YIN Yanxin, MENG Zhijun. Wheat Moisture Content Prediction Model for Combine Harvester Based on GA-BP Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):325-332.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码