基于Transformer FNN和无人机高光谱遥感技术的棉花黄萎病危害等级分类研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFD2002400)、兵团财政科技计划项目(2023AB014)、国家自然科学基金项目(31901401)和华南农业大学农业装备技术全国重点实验室开放基金项目(SKLAET 202405)


Classification of Cotton Verticillium wilt Severity Levels Based on Transformer FNN and UAV Hyperspectral Remote Sensing Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前使用无人机识别棉花黄萎病危害等级时,光谱数据冗余度高和传统机器学习模型识别精度不足等问题,采用无人机搭载NanoHyperspec高光谱成像仪采集棉田高光谱图像,通过探究棉花冠层对不同黄萎病危害等级的光谱响应特征,利用最优植被指数组合建立一种适用于黄萎病危害等级分类的监测模型,实现棉花黄萎病危害等级的精准分类。首先,利用最小冗余最大相关算法(Minimum redundancy maximum relevance,mRMR)对17种潜在的植被指数和270个光谱波段进行特征重要性排序,将mRMR筛选得到的特征,通过逐步递增分组的方式输入至极限梯度提升模型(eXtremegradientboosting,XGBoost),确定与黄萎病危害等级相关性最高的植被指数和光谱特征波段。然后,基于Transformer架构和前馈神经网络(Feed forward neural network,FNN)构建TransformerFNN棉花黄萎病危害等级分类模型,将植被指数与光谱特征波段输入TransformerFNN模型进行分类识别,对比了植被指数与光谱特征波段对棉花黄萎病危害等级分类识别的准确性。最后,利用后向传播神经网络(Back propagation neural network,BPNN)、Transformer和支持向量机(Support vector machine,SVM)构建棉花黄萎病危害等级分类模型,并对这4种分类模型进行精度验证与对比分析。结果表明:棉花黄萎病等级分类的最优植被指数组合为MSR和TVI,最优特征波段组合为430、439、488、566、697、722、742、764、769、782、822、831、858、873、878、893、909、985nm。基于TransformerFNN模型,植被指数对黄萎病危害等级的总体分类精度为95.6%,较光谱特征波段的总体分类精度89.4%提高6.2个百分点。基于植被指数,TransformerFNN模型对黄萎病危害等级的分类识别率比BPNN模型提高11.2个百分点,比Transformer模型提高17.2个百分点,比SVM模型提高30.8个百分点。研究提出了一种通过植被指数进行棉花黄萎病高精度监测方法,可为大面积棉花黄萎病精确监测提供有效措施。

    Abstract:

    Aiming to address the challenges of high spectral data redundancy and the limited accuracy of traditional machine learning models in identifying cotton Verticillium wilt severity levels, Nano Hyperspec hyperspectral cameras were mounted on drones to collect hyperspectral images of cotton fields. The spectral response characteristics of cotton canopies to different severity levels of Verticillium wilt were analyzed. An optimal vegetation index combination was identified and used to establish a monitoring model suitable for severity classification. This approach enabled precise classification of Verticillium wilt severity levels. The minimum redundancy maximum relevance algorithm was applied to rank the importance of features among 17 vegetation indices and 270 spectral bands. Features selected by this algorithm were incrementally grouped and input into an eXtreme gradient boosting model. This process determined the vegetation indices and spectral bands most strongly correlated with Verticillium wilt severity levels. A Transformer FNN ( feedforward neural network) classification model was then developed. Vegetation indices and spectral features were used as inputs to this model for classification. The classification accuracy of vegetation indices and spectral features in identifying Verticillium wilt severity levels was compared. Additionally, classification models based on back propagation neural network (BPNN), Transformer, and support vector machines ( SVM) were constructed. The accuracy of these models was validated and analyzed. The results showed that the optimal vegetation index combination for Verticillium wilt severity classification was MSR and TVI. The optimal spectral band combination included 430 nm, 439 nm, 488 nm, 566 nm, 697 nm, 722 nm, 742 nm, 764 nm, 769 nm, 782 nm, 822 nm, 831 nm, 858 nm, 873 nm, 878 nm, 893 nm, 909 nm, and 985 nm. Using the Transformer FNN model, the overall classification accuracy based on vegetation indices reached 95.6% . This represented a 6.2 percentage points improvement compared with the accuracy achieved by using spectral features, which was 89.4% . For vegetation indices, the Transformer FNN model achieved a classification accuracy of 95.6% . This was 11.2 percentage points higher than the accuracy of the BPNN model, 17.2 percentage points higher than that of the Transformer model, and 30.8 percentage points higher than that of the SVM model. The research proposed a high-accuracy monitoring method for cotton Verticillium wilt based on vegetation indices. It provided an effective approach for large-scale and precise monitoring of cotton Verticillium wilt.

    参考文献
    相似文献
    引证文献
引用本文

廖娟,梁业雄,姜锐,邢赫,何欣颖,王辉,曾浩求,何松炜,唐赛欧,罗锡文.基于Transformer FNN和无人机高光谱遥感技术的棉花黄萎病危害等级分类研究[J].农业机械学报,2025,56(2):240-251. LIAO Juan, LIANG Yexiong, JIANG Rui, XING He, HE Xinying, WANG Hui, ZENG Haoqiu, HE Songwei, TANG Saiou, LUO Xiwen. Classification of Cotton Verticillium wilt Severity Levels Based on Transformer FNN and UAV Hyperspectral Remote Sensing Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):240-251.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码