宽行距果蔬种植环境土壤检测机器人设计与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省普通高校特色创新项目(2022KTSCX057)、广东省科技创新战略专项资金项目(pdjh2023b0261)和“十四五”广东省农业技创新十大主攻方向“揭榜挂帅”项目(2022SDZG03)


Design and Experiment of Soil Detection Robot for Wide-rowing Fruit and Vegetable Planting Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现宽行距果蔬种植环境下土壤参数高效检测,根据土壤自动化检测作业需求,本文对土壤多参数检测机器人的土壤钻孔模组和检测传感器运动模组分别进行了结构和控制电路设计,配置搭载了视觉导航模组。其中视觉导航控制模组使用DSU2Net轻量化分割模型进行路径识别,通过提取分割路径感兴趣区域,获取左右边界点计算中间导航点,之后运用最小二乘法拟合导航线,结合实时获取的机器人航向角,利用PID算法进行行走导航控制。试验结果表明,DSU2Net模型参数量仅为6.5×105,识别帧率达到63.17f/s,平均准确率为94.68%,F1值为89.87%,具有较好的实时性和准确性。初始位置无偏差情况下,不同速度平均误差不大于0.074m,标准误差不大于0.044m。初始位置有偏差情况下,平均误差不大于0.085m,标准误差不大于0.088m。土壤钻孔和检测传感器运动模组作业稳定,能够对不同深度土壤进行钻孔松土和参数检测。研究结果可为果蔬种植环境土壤自主检测提供技术方案。

    Abstract:

    In order to achieve efficient autonomous operation for soil parameter detection in the wide-row planting environment of fruits and vegetables, the structure and control circuit of the soil drilling module and the detection sensor movement module for the multi-parameter soil detection robot were designed according to the requirements of automated soil testing tasks, and it was equipped with a visual navigation module. The visual navigation control module used the lightweight segmentation model DS-U2Net for path recognition, extracted the region of interest from the segmented path, acquired the left and right boundary points to calculate the middle navigation point, and then fit the navigation line by using the least squares method. Combined with the real-time acquisition of the robot’s heading angle, the PID algorithm was applied for accurate walking navigation control. Experiments showed that the DS-U2Net model had only 6.5×10 5 parameters, with a recognition frame rate of 63.17 frames per second, an average accuracy of 94.68% , and an F1 score of 89.87% , demonstrating good real-time performance and accuracy. With no initial position deviation, the average error at different speeds was no more than 0.074 m, with a standard error of no more than 0.044 m. With initial position deviation, the average error was no more than 0.085 m, with a standard error of no more than 0.088 m. The soil drilling and detection sensor movement module operated stably, which was capable of drilling and loosening soil at different depths and detecting parameters. The research results can provide a technical solution for autonomous soil detection in the planting environment of fruits and vegetables.

    参考文献
    相似文献
    引证文献
引用本文

张日红,陈德照,王振豪,佘梓鹏,王宝娥.宽行距果蔬种植环境土壤检测机器人设计与试验[J].农业机械学报,2025,56(2):217-228. ZHANG Rihong, CHEN Dezhao, WANG Zhenhao, SHE Zipeng, WANG Baoe. Design and Experiment of Soil Detection Robot for Wide-rowing Fruit and Vegetable Planting Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):217-228.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码