基于VS-1D CNN的玉米籽粒直收机清选损失检测系统设计与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2024YFD2001300)


Design and Experiment of VS-1D CNN-based Clearing Loss Detection System for Corn Kernel Direct Harvester
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统清选损失检测传感器依靠时域特征阈值分辨籽粒冲击信号存在的阈值确定难、鲁棒性差、缺乏适应性等问题,开发了一套玉米籽粒直收机清选损失检测系统,提出了一种基于变尺度一维卷积神经网络(VS-1D CNN)的籽粒冲击分类算法。首先,针对冲击信号采集、处理与传输设计了硬件电路与软件处理程序,开发了配套上位机。然后,搭建数据采集试验平台,采集、保存了不同冲击高度和角度下杂余、玉米籽粒冲击信号,构建了数据集并对VS-1D CNN籽粒冲击分类算法进行了训练,训练结果表明,该模型在测试集上准确率为94.2%。最后,对所设计的检测系统在不同工作条件下的性能及不同杂余、籽粒混合物的分类性能进行了验证,结果表明所提出的VS-1D CNN算法性能表现良好,在不同安装位置和不同籽粒流量下,检测准确率最高可达95%以上;对于不同比例杂余、籽粒混合物识别分类准确率达93%以上,表明本文所提出算法性能优异,可以在不设置固定时域特征阈值情况下准确检测籽粒损失。

    Abstract:

    Aiming to address the challenges of arduous threshold delineation, inadequate robustness, and insufficient adaptability of conventional clearing loss detection sensors that depend on temporal domain feature thresholds to distinguish kernel impact signals, a comprehensive clearing loss detection system for corn kernel direct collectors was developed, and a kernel impact classification algorithm predicated on a variable scale one-dimensional convolutional neural network (VS-1D CNN) was proposed. Initially, the hardware circuitry and software processing program were engineered for impact signal acquisition, processing, and transmission, alongside the development of the supporting host computer. Subsequently, a data acquisition testing platform was established to gather and archive the impact signals of weeds and maize kernels under varying impact heights and angles, thereby constructing a data set and training the VS 1D CNN seed impact classification algorithm, with the training outcomes indicating that the model’s accuracy was 94.2% on the testing set. Ultimately, the efficacy of the devised detection system under diverse operational conditions and the classification performance of distinct stray residues and seed mixtures were validated, with results demonstrating that the proposed VS-1D CNN algorithm performed commendably, achieving detection accuracy exceeding 95% across different installation sites and varying seed flow rates;the classification accuracy for identifying different proportions of stray residues and seed mixtures surpassed 93% , signifying that the proposed algorithm exhibited exceptional performance. This underscored that the algorithm delineated in this manuscript possessed remarkable efficacy and can accurately detect seed losses without establishing a fixed temporal domain feature threshold.

    参考文献
    相似文献
    引证文献
引用本文

邢高勇,葛世聪,卢彩云,赵博,刘阳春,周利明.基于VS-1D CNN的玉米籽粒直收机清选损失检测系统设计与试验[J].农业机械学报,2025,56(2):206-216. XING Gaoyong, GE Shicong, LU Caiyun, ZHAO Bo, LIU Yangchun, ZHOU Liming. Design and Experiment of VS-1D CNN-based Clearing Loss Detection System for Corn Kernel Direct Harvester[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):206-216.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码