基于农业机器人本体传感信号的旱田平作与垄作类型识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32271988)、吉林省科技发展计划项目(20230508032RC)和吉 林省重点研发计划项目(20220202028NC)


Recognition Method of Flat and Ridged Crop Types in Dry Fields Based on Propriety Sensing Signals of Agricultural Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    旱田农业耕作模式包括平作与垄作,不同耕作模式的地形起伏差异大,作物行耕作模式的准确识别对机器人行走稳定性具有重要意义,提出一种基于本体传感器信号的平作与垄作类型地形识别方法。首先,采集四足机器人在玉米田间作物行内行走的机身惯性测量单元(Inertial measure mentunit,IMU)信号,使用机器人左前腿的足端速度数据作为补充,生成机器人在平作与2种不同起垄高度的垄作种植模式下行走的信号数据集。其次,利用卷积神经网络(Convolutional neural networks,CNN)提取信号的空间信息特征,通过双向长短期记忆网络(Bidirectional longshort-term memory,BiLSTM)提取时间序列特征,采用注意力机制(Self-attention,SA)提取CNN与BiLSTM输出特征信息的注意力分值。最后,通过模型对比和田间试验,验证本文模型对平作与垄作类型识别的有效性。结果表明,本文CNNBiLSTMSA模型F1值为92%,与CNN、CNNLSTM、CNNLSTMSA与CNNBiLSTM模型相比,分别提升10.17、3.51、2.57、1.27个百分点。内嵌识别模型的田间机器人可在1.4s内实现对当前作物行平作与垄作类型90%的识别准确率,在4.8s内达到对作物行类别分类要求,满足机器人面对作物行不同地形的识别快速性、准确性要求。该算法能提供机器人在旱田典型耕作模式下的地形识别能力,为提高四足机器人作业的田间稳定性提供技术支撑。

    Abstract:

    Dryland agricultural cultivation modes include flat cropping and ridge cropping, and the terrain undulation of different cultivation modes varies greatly, so accurate crop row cultivation mode recognition is of great significance to the stability of robot travelling. A methodology for identifying the terrain of crop rows and ridges utilizing appropriate sensor signals was introduced. Initially, the inertial measurement unit ( IMU) signals were collected from a quadrupedal robot navigating through the crop rows of a corn field. The velocity data from the robot’s left front leg served as supplementary information to compile a comprehensive signal dataset, encompassing the robot’s movement in both flat cropping and row cropping modes, with two distinct row heights. Subsequently, spatial information features were extracted from the signals by using convolutional neural networks (CNN), while time series features were derived through bidirectional long short-term memory (BiLSTM) networks. Additionally, self-attention (SA) was employed to capture the attention scores of the output feature information from both CNN and BiLSTM. Ultimately, the efficacy of the proposed model in distinguishing between flat and ridge crop types was validated through model comparisons and field experiments. The results indicated that the F1 score of proposed CNN BiLSTM SA model reached 92% , marking an improvement of 10.17, 3.51, 2.57 and 1.27 percentage points over that of the CNN, CNN LSTM, CNN LSTM SA, and CNN BiLSTM models, respectively. When the recognition model was embedded in the field robot, it achieved a 90% accuracy rate in identifying the current crop row tillage type within 1.4 s, and met the classification criteria for flat and ridge categories within 4.8 s. This performance satisfied the robot’s requirements for rapid and accurate recognition across various tillage terrains. The algorithm can provide the robot with ability to recognize crop rows under typical tillage patterns in dry fields, and the results can provide technical support for improving the field stability of quadrupedal robots in autonomous operations.

    参考文献
    相似文献
    引证文献
引用本文

张伟荣,陈学庚,齐江涛,周俊博,温浩军,刘慧力.基于农业机器人本体传感信号的旱田平作与垄作类型识别方法[J].农业机械学报,2025,56(2):164-174. ZHANG Weirong, CHEN Xuegeng, QI Jiangtao, ZHOU Junbo, WEN Haojun, LIU Huili. Recognition Method of Flat and Ridged Crop Types in Dry Fields Based on Propriety Sensing Signals of Agricultural Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):164-174.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码