基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFD2001204)、常州市科技支撑计划项目(CE20232001)和江苏省现代农机装备与技术示范推广项目(NJ2023-27)


Velocity Control for Autonomous Following Platform Walking Speed Based on DBO Optimized BP-PID Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dungbeetle optimizer,DBO)优化BP神经网络PID控制算法。该算法采用DBO优化算法对BP神经网络的权值进行优化,加快了BP神经网络的自学习速率,实现对温室自主跟随电动平台行走速度的快速精确控制,提高系统的响应速度并降低超调量,最后,将本文提出的行走速度控制算法与PID控制算法、BP-PID控制算法、遗传算法(Genetical gorithm,GA)优化PID控制算法、蚁群算法(Antcolony optimization,ACO)优化PID控制算法对比。试验结果表明,当行走速度为1m/s时,系统平均响应速度为0.11s,调整时间为0.27s,最大超调量为2.44%;当履带线速度大小和方向发生变化时,系统依然表现出响应速度快、超调量小且稳态过程无振荡的优点。DBO-BP-PID控制算法在控制稳定性和控制精度上表现更优,有效降低了系统时滞性和非线性影响,满足温室自主跟随电动平台行走速度控制的需求。

    Abstract:

    This study addresses the issues of complexity in greenhouse operational environments and poor stability of existing mechanical walking systems by conducting research on the autonomous following electric platform walking speed control in greenhouses. Due to the system’s inherent nonlinearity and time-varying characteristics, traditional PID control algorithms fail to achieve effective control. Therefore, a dung beetle optimizer (DBO) optimized BP neural network PID control algorithm was proposed. This algorithm optimized the weights of the BP neural network by using the DBO algorithm, thereby accelerating the self-learning rate of the BP neural network. It achieved rapid and precise control of the greenhouse autonomous following electric platform walking speed, enhanced system response speed, and reduced overshoot. Experimental results demonstrated that at a walking speed of 1 m / s, the system exhibited an average response speed of 0.11 s, settling time of 0.27 s, and a maximum overshoot of 2.44% . When there were changes in track speed and direction, the system maintained advantages of fast response, minimal overshoot, and oscillation-free steady-state process. Compared with PID control algorithm, BP-PID control algorithm, GA-PID control algorithm, ACO-PID control algorithm, the DBO-BP-PID control algorithm showed superior performance in control stability and precision, effectively mitigating system hysteresis and nonlinear effects, thereby meeting the control requirements for greenhouse autonomous following electric platform walking speed.

    参考文献
    相似文献
    引证文献
引用本文

肖茂华,陈泰,庄晓华,朱烨均,胡艺缤,王鸿翔.基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究[J].农业机械学报,2025,56(2):83-91,154. XIAO Maohua, CHEN Tai, ZHUANG Xiaohua, ZHU Yejun, HU Yibin, WANG Hongxiang. Velocity Control for Autonomous Following Platform Walking Speed Based on DBO Optimized BP-PID Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):83-91,154.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码