稻油轮作无人化农场农机作业路径规划算法与移动端软件研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(52075211、31771683)、湖北省重点研发计划项目(2021BBA240)和中央高校基本科研业务费专项


Development of Agricultural Machinery Operation Path Planning Algorithms and Mobile Software for Unmanned Rice Oil Rape Rotation Farms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    稻油轮作是我国长江中下游地区水稻和油菜两种作物种植的主要模式。为发展稻油轮作无人化农场,进一步降低该地区水稻和油菜种植用工成本、提高种植效益及竞争力,本文通过分析稻油轮作无人化农场的生产模式、机具类型和作业路径规划要求,针对稻油轮作无人化农场典型作业环节农机具田间自动导航作业过程的路径需求,结合Android软件开发、JavaPython混合编程、云服务器和数据库等多项技术,设计了基于Android应用框架的无人化农场智能农机具作业运维软件,包括地块管理、机具属性管理、路径规划及仿真模拟和路径导出等模块。在已有联合收获机收获作业路径规划算法、播种机播种作业路径规划算法和无人机植保及飞防作业路径规划算法的基础上,重点设计了稻收油播和水田耕整地2个典型作业环节的路径规划算法,并通过Chaquopy插件混合编程调用前期Python编码实现的田间作业路径规划算法。通过基于GoogleEarth软件选取的典型实际田块多算例仿真测试和基于稻收油播一体机的实机田间试验联合调试结果表明,所设计的移动端软件及路径规划算法运行稳定可靠,软件人机交互性好,算法能够针对不同机具及常见四边形地块提供有效的自动导航自主作业路径,单个田块作业路径规划算法在小米5Pro平板计算机等4种典型Android移动终端上的运行耗时为29~1898ms,计算效率及路径合理性均满足实际应用中典型作业环节无人化生产的需要。所提出的算法及软件框架,为长江中下游区域稻油轮作无人化农场的建设提供了作业路径规划理论及技术支撑。

    Abstract:

    Unmanned farm will be the ultimate form of rice and oil rape cultivation in the rice oil rape rotation area in the middle and lower reaches of the Yangtze River in China. By analyzing the production mode, implement type and operation path planning requirements of unmanned farming in rice and oil rape rotation, intelligent farm implement operation and maintenance software for unmanned farming was designed based on the Android application framework, including modules of plot management, implement attribute management and path planning for the path requirements of the field operation process of typical operation links of unmanned farming for rice and oil rape rotation cultivation. On the basis of the existing algorithms of the group, focusing on designing algorithms for operation path planning in two typical processes, namely integrated rice harvesting and rapeseed sowing and paddy ploughing, and the field operation path planning algorithms coded in Python beforehand was called through the mixed programming of Chaquopy plug-in. The results of simulation test and field test showed that the designed and developed Android software was stable and reliable, with good human computer interaction, and path planning algorithms were able to provide effective operation paths for different implements and common quadrilateral plots, and the operation time of the single field operation path planning algorithm ranged from 29 ms to 1 898 ms, and the computational efficiency and rationality of the paths met the needs of unmanned production of typical operation links in the real application. The computational efficiency and path reasonableness met the needs of unmanned production in typical operations, providing theoretical and technical support for the construction of unmanned farms in the middle and lower reaches of the Yangtze River for rice and oil rape rotations.

    参考文献
    相似文献
    引证文献
引用本文

黄小毛,王绍帅,石逸泽,黄希亚,马永生,罗承铭.稻油轮作无人化农场农机作业路径规划算法与移动端软件研究[J].农业机械学报,2025,56(2):73-82. HUANG Xiaomao, WANG Shaoshuai, SHI Yize, HUANG Xiya, MA Yongsheng, LUO Chengming. Development of Agricultural Machinery Operation Path Planning Algorithms and Mobile Software for Unmanned Rice Oil Rape Rotation Farms[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):73-82.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码