大田无人化智慧农场农田边界识别技术研究现状与展望
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFD2000600)


Research Status and Outlook of Farmland Boundary Recognition Technology in Large-scale Unmanned Smart Farms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智慧农业是现代农业的发展方向,无人化智慧农场是实现智慧农业的重要途径,无人化智慧农场是农业转型升级的重要方向,其精准高效作业质量依赖于农田边界识别技术的精度和可靠性。本文系统梳理了农田边界识别的技术体系与应用场景,重点分析了卫星遥感、无人机遥感和地面感知3类数据获取方式和识别算法研究现状。卫星遥感的优势在于其广域周期性的监测能力可支撑大范围农田变化分析,但空间分辨率有限;无人机高分辨率影像与地面传感器深度融合(如 LiDAR 点云与 RGB 图像配准)可实现厘米级边界分割,为复杂农田场景提供高精度数据支撑,但视野范围有限。传统图像处理算法(阈值分割、边缘检测等)在规则农田中具有实时性优势,但难以应对异物同谱、静态要素遮挡等场景;基于深度学习的 U-Net、DeepLab 系列模型通过多尺度特征融合与注意力机制优化可显著提升对不规则边界的识别鲁棒性。 这些技术都已应用于农业数字化地图构建和农机路径规划,但仍面临多源数据时空对齐精度不足导致融合效率低,轻量化模型在边缘计算设备上的推理速度难以满足实时作业需求,农田边界变动实时监测难等问题。未来应聚焦多模态时空特征融合、边缘推理导向的模型轻量化技术,以及空-天-地协同支撑下的数字农田地图自主更新技术,为实现农田边界的高精度、高响应和高动态识别提供支撑。

    Abstract:

    Smart agriculture is the development direction of modern agriculture, and unmanned smart farms are an important way to achieve smart agriculture. Unmanned smart farm is an important direction for agricultural transformation and upgrading, and its precise and efficient operation quality depends on the accuracy and reliability of farmland boundary recognition technology. The technical system and workflow methods of farmland boundary recognition were systematically reviewed, with a focus on analyzing the characteristics and application scenarios of three types of data acquisition methods: satellite remote sensing, UAV remote sensing, and ground-based sensing. The advantage of satellite remote sensing lies in its wide-area, periodic monitoring capability that supports large-scale farmland change analysis, though its spatial resolution is limited. UAV high-resolution images, when deeply integrated with ground sensors ( LiDAR point clouds and RGB image registration), can achieve centimeter-level boundary segmentation, providing high-precision data support for complex farmland scenarios, but its field of view is limited. Traditional image processing algorithms (threshold segmentation, edge detection) offer real-time advantages in regular farmlands but struggle with scenarios involving objects of similar spectra and static element occlusions. Deep learning-based models such as U Net and DeepLab, through multi-scale feature fusion and attention mechanisms, significantly enhance the robustness of irregular boundary recognition. Current technologies support the construction of digital maps and agricultural machinery path planning. However, there are still three main bottlenecks: insufficient spatio- temporal alignment accuracy of multi-source data, resulting in low fusion efficiency; slow inference speeds of lightweight models on edge computing devices, which failed to meet real-time operation demands; and the lack of dynamic farmland boundary update mechanisms, restricting long-term monitoring effectiveness. Future research should focus on multi-modal spatio-temporal feature fusion, lightweight model technologies driven by edge inference, and a framework for autonomous updating of digital farmland maps supported by air space ground collaboration, to provide theoretical support for high-precision, high-response, and high-dynamic boundary recognition in farmlands.

    参考文献
    相似文献
    引证文献
引用本文

罗锡文,谷秀艳,胡炼,赵润茂,岳孟东,何杰,黄培奎,汪沛.大田无人化智慧农场农田边界识别技术研究现状与展望[J].农业机械学报,2025,56(2):1-18. LUO Xiwen, GU Xiuyan, HU Lian, ZHAO Runmao, YUE Mengdong, HE Jie, HUANG Peikui, WANG Pei. Research Status and Outlook of Farmland Boundary Recognition Technology in Large-scale Unmanned Smart Farms[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):1-18.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期:
文章二维码