主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62171206、62061022)和中国烟草总公司云南省公司烟叶智能分级项目(HZ2021K0462A)


Crop Leaf Grade and Disease Recognition Method Based on Backbone Information Sharing and Multi-receptive Field Feature Adaptive Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf grade and disease recognition network,CLGDRNet)。首先,CLGDRNet采用CSPNet、GhostNet、ShuffleNet构建特征提取主干网络,同时将CSPNet、GhostNet、ShuffleNet所提取的特征信息进行共享以达到信息互补的目的;其次,设计多感受野特征自适应融合模块(Multi-receptive field feature adaptive fusion module,MRFA),将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,提出一种深层梯度跨空间学习高效多尺度注意力模块(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),将EMAD嵌入模型的颈部以获取深层梯度信息和目标坐标信息并跨空间融合不同尺度的上下文信息,使模型能够对深层特征图产生更精确的像素级关注。实验结果表明,CLGDRNet在初烤烟叶分级数据集(Tobacco leaf grading dataset, TLGD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到85.0%、76.1%,在苹果叶病害数据集(Apple leaf disease dataset, ALDD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到97.6%、74.2%。相较于多种先进目标检测算法,CLGDRNet具有更高的识别精度,可为高精度作物叶片等级和病害识别提供关键技术支撑。

    Abstract:

    Rapid and accurate recognition of crop leaf grade and disease is integral to the advancement of intelligent equipment for promoting refined management of agricultural products. In response to the problems of low accuracy and high cost of crop leaf grade and disease recognition, a crop leaf grade and disease recognition network (CLGDRNet) was proposed based on backbone information sharing and multi-receptive field feature adaptive fusion. Firstly, CSPNet, GhostNet and ShuffleNet were utilized to build a feature extraction backbone, and the feature information extracted by CSPNet, GhostNet and ShuffleNet was shared to achieve the purpose of information complementarity. Secondly, a multi-receptive field feature adaptive fusion module (MRFA) was designed, and the different receptive field feature maps were adaptively weighted and fused to highlight the effective channel information while enhancing the local receptive fields. Finally, an efficient multi-scale attention mechanism with deep gradient cross-space learning (EMAD) was proposed, the EMAD was embedded in the neck to obtain the deep gradient information and the target coordinate information, in addition, the context information of different scales was fused across the space, which could generate more accurate pixel-level attention to the deep feature map. The experimental results showed that the recognition accuracy of mAP@0.5 and mAP@0.5:0.95 for tobacco leaf grading dataset (TLGD) achieved 85.0% and 76.1%, respectively, and 97.6% and 74.2% for apple leaf disease dataset (ALDD), respectively. Compared with a variety of advanced target detection algorithms, CLGDRNet achieved higher recognition accuracy and faster recognition speed, which could provide key technical support for high-precision fine recognition of crop leaves.

    参考文献
    相似文献
    引证文献
引用本文

罗洋,何自芬,张印辉,陈光晨.主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法[J].农业机械学报,2025,56(1):377-387. LUO Yang, HE Zifen, ZHANG Yinhui, CHEN Guangchen. Crop Leaf Grade and Disease Recognition Method Based on Backbone Information Sharing and Multi-receptive Field Feature Adaptive Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):377-387.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:
文章二维码