基于改进DeblurGANv2模型的小麦条锈菌夏孢子离焦模糊显微图像复原方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32301701)、安徽省高等学校科学研究项目(2022AH050085)、合肥市自然科学基金项目(202309)、合肥市关键共性技术研发“揭榜挂帅”项目(GJ2022QN06)和河南省重点研发专项(241111110800)


Restoration of Defocused Blurred Microscopic Images of Urediniospores of Wheat Stripe Rust Based on Improved DeblurGANv2 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂工况下孢子捕捉设备显微成像易出现离焦模糊导致高频信息缺失和夏孢子边缘模糊等问题,提出了一种改进DeblurGANv2模型的小麦条锈菌夏孢子离焦模糊显微图像复原方法。首先,在DeblurGANv2模型特征融合模块后设计引入一个自底向上的5层特征增强模块,缩短浅层特征向深层特征的传播路径,增强不同尺度特征信息的相互融合,提升模型对高频和孢子边缘等信息的复原效果;同时,在特征提取主干网络部分引入卷积注意力机制(Convolutional block attention module,CBAM),在空间和通道2个维度增加夏孢子特征信息权重,提升模型对夏孢子的特征表达能力,丰富复原图像中夏孢子细节信息;最后,选取4种主流目标检测模型YOLO v5、Faster-R CNN、CenterNet和YOLO v8对复原前后的图像进行夏孢子检测,对比改进DeblurGANv2复原模型对检测性能的影响。试验结果表明,改进后DeblurGANv2复原模型均方误差、峰值信噪比和结构相似性指标分别为0.0014、28.88 dB、0.966,相较于原始DeblurGANv2模型性能分别提升17.65%、3.29%、0.35%;4种目标检测模型在结合改进DeblurGANv2复原模型去模糊后,检测性能指标均有不同程度提升,其中结合改进DeblurGANv2复原的YOLO v8模型性能表现最优,精确率、召回率、平均精度均值分别为96.1%、95.1%、97.7%,与直接使用YOLO v8检测模型相比,分别提升3.0、5.0、23.6个百分点,验证了本文提出的改进DeblurGANv2复原模型可复原出显微图像中离焦模糊夏孢子信息,显著提升了夏孢子目标检测模型检测性能,为气传小麦条锈菌夏孢子检测提供了技术支持。

    Abstract:

    Due to the shallow depth of field inherent in optical microscopic imaging of micron-scale spores, defocused blurred images frequently occur, resulting in the loss of high-frequency information and blurred edges of urediniospores. Defocus deblurring restoration is crucial for the subsequent accurate detection of spore targets, making it a critical technical foundation for the early prevention and control of airborne wheat stripe rust. To address the issues of high-frequency information loss and blurred edges of urediniospores caused by defocused blurring in microscopic imaging of spore capturing devices under complex conditions, an improved DeblurGANv2 method for deblurring microscopic images of urediniospores was proposed. Firstly, a bottom-up five-level feature enhancement module after the feature fusion module of DeblurGANv2 was introduced, which shortened the propagation path from shallow features to deep features, enhancing the mutual fusion of features at different scales and improving the model’s ability to restore high-frequency and spore edge features. Simultaneously, the convolutional block attention module (CBAM) was incorporated into the feature extraction backbone network, increasing the weight of urediniospore feature information in both spatial and channel dimensions, enhancing the model’s capacity to express urediniospore features and enriching the detail information in the restored images. Finally, four mainstream object detection models, including YOLO v5, Faster-R CNN, CenterNet, and YOLO v8 were employed to detect urediniospores in images before and after restoration, comparing the impact of the improved DeblurGANv2 model on detection performance. The experimental results indicated that the improved DeblurGANv2 restoration model achieved mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) values of 0.001 4, 28.88 dB, and 0.966, respectively, representing improvements of 17.65%, 3.29%, and 0.35% over the original DeblurGANv2 model, respectively. Furthermore, the four object detection models exhibited varying degrees of performance enhancement when combined with the improved DeblurGANv2 model. Among them, the YOLO v8 model, utilizing the improved DeblurGANv2 restoration, demonstrated the best performance, with precision (P), recall (R), and mean average precision (mAP@0.5) values of 96.1%, 95.1%, and 97.7%, respectively, an increase of 3.0, 5.0, and 23.6 percentage points compared with that using the YOLO v8 detection model directly. This validated the effectiveness of the proposed improved DeblurGANv2 model in recovering defocused and blurred spore information in microscopic images, significantly enhancing the detection performance of spore detection models and providing technical support for the airborne detection of urediniospores.

    参考文献
    相似文献
    引证文献
引用本文

雷雨,陈旭,阮超,钱海明,李劲松,黄林生,赵晋陵.基于改进DeblurGANv2模型的小麦条锈菌夏孢子离焦模糊显微图像复原方法[J].农业机械学报,2025,56(1):366-376. LEI Yu, CHEN Xu, RUAN Chao, QIAN Haiming, LI Jinsong, HUANG Linsheng, ZHAO Jinling. Restoration of Defocused Blurred Microscopic Images of Urediniospores of Wheat Stripe Rust Based on Improved DeblurGANv2 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):366-376.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:
文章二维码