基于无人机遥感数据和机器学习的向日葵LAI反演
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金项目(ZR2021MD091)和山东省引进顶尖人才“一事一议”专项经费项目(鲁政办字[2018]27号)


Sunflower LAI Inversion Based on Unmanned Aerial Vehicle Remote Sensing Data and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为快速、准确获取育种向日葵叶面积指数,通过无人机搭载多光谱相机和DJI L1型激光雷达镜头,获取向日葵现蕾期、开花期和成熟期的无人机遥感数据。计算了9种多光谱植被指数和8类纹理特征,提取了8种LiDAR特征参数,利用皮尔逊相关系数法筛选出与LAI相关性高的4种植被指数、3类纹理特征和4种LiDAR特征参数;采用K近邻(K-nearest neighbor, KNN)、随机森林(Random forest,RF)、极致梯度提升树(eXtreme gradient boosting,XGBoost)和分类提升算法(Category boosting,CatBoost),分别构建基于植被指数、纹理特征、LiDAR特征参数、植被指数+纹理特征、植被指数+LiDAR特征参数、纹理特征+LiDAR特征参数和3类特征组合的向日葵LAI估测模型,利用决定系数(Coefficient of determination,R2)和均方根误差(Root mean square error,RMSE)来评价模型精度;采用最佳模型反演育种向日葵LAI并将其可视化。结果表明,CatBoost算法与植被指数+纹理特征+LiDAR特征参数建立的向日葵LAI估测模型在3个时期的效果最好,决定系数分别为0.93、0.91和0.90,均方根误差分别为0.13、0.14和0.15。研究结果可为向日葵育种及田间精准管理提供依据。

    Abstract:

    To quickly and accurately ascertain the leaf area index (LAI) of breeding sunflowers, unmanned aerial vehicle (UAV) remote sensing data were collected at the budding, flowering, and maturation phases of the sunflowers by utilizing a multispectral camera and DJI L1 LiDAR lens. The analysis included the computation of nine multispectral vegetation indices and eight categories of texture features, alongside the extraction of eight LiDAR feature parameters. By applying the Pearson correlation coefficient method, four vegetation indices, three texture categories, and four LiDAR features, which exhibited a high correlation with LAI, were identified for further analysis.The study employed machine learning algorithms, namely K-nearest neighbor (KNN), random forest (RF), eXtreme gradient boosting (XGBoost), and category boosting (CatBoost), to develop models for estimating the LAI of sunflowers. These models were based on singular and combined inputs of vegetation indices, texture features, and LiDAR feature parameters. The accuracy of these models was evaluated by using the full terms coefficient of determination (R2) and root mean square error (RMSE). The model that showcased the highest accuracy, utilizing the CatBoost algorithm in conjunction with a combination of vegetation indices, texture features, and LiDAR feature parameters, was selected for inverse estimation of LAI in breeding sunflowers and subsequent visualization. The findings demonstrated that this combined approach yielded the best model for LAI estimation across all three stages of sunflower growth, with coefficient of determination values of 0.93, 0.91 and 0.90, and root mean square error values of 0.13, 0.14 and 0.15, respectively. The research result can lay the groundwork for enhanced sunflower breeding and precise field management by leveraging advanced remote sensing and machine learning technologies.

    参考文献
    相似文献
    引证文献
引用本文

于海琳,兰玉彬,李京谦,杨蕾,崔文豪,赵军胜,宫慧慧,赵静.基于无人机遥感数据和机器学习的向日葵LAI反演[J].农业机械学报,2025,56(1):356-365. YU Hailin, LAN Yubin, LI Jingqian, YANGA Lei, CUI Wenhao, ZHAO Junsheng, GONG Huihui, ZHAO Jing. Sunflower LAI Inversion Based on Unmanned Aerial Vehicle Remote Sensing Data and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):356-365.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:
文章二维码