融合无人机多时相参数的冬小麦单产估测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省自然科学基金项目(BK20231004)和中央高校基本科研业务费专项资金项目(KYCXJC2023007)


Yield Estimation of Winter Wheat Based on Multi-temporal Parameters by UAV Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探讨无人机遥感与多时相参数融合在冬小麦单产预测中的潜力,采集了冬小麦7个生育期的无人机RGB和多光谱数据,从中分别提取光谱参数和形态参数,采用5种机器学习算法建模,比较不同生育期单产预测效果,在此基础上,筛选优势参数组合,分别比较不同生育期及参数组合与单产预测之间的相关性。结果表明,不同生育期及参数组合对冬小麦单产预测具有不同影响;单生育期时,灌浆期和开花期预测效果最佳,其次为抽穗期、孕穗期、成熟期、拔节期和分蘖期;多生育期时,双生育期、三生育期、四生育期组合预测精度逐渐升高,但考虑到增长幅度以及数据采集、算力开销、处理成本等因素,“拔节期+抽穗期+灌浆期”的三生育期组合经济性最高。5种机器学习算法整体预测精度从高到低分别为反向传播神经网络、随机森林、支持向量机、极端梯度提升和逐步多元回归,通过机器学习可解释性方法SHAP优选的光谱和形态参数组合虽然不同生育期有所不同,但除拔节期外,均能提高单产预测精度。研究结果可为冬小麦单产预测提供方法依据和技术参考。

    Abstract:

    To comprehensively assess the potential of integrating unmanned aerial vehicle (UAV) remote sensing and multi-temporal parameters fusion in predicting winter wheat yield in the past, the RGB and multi-spectral data from UAVs spanning seven critical growth stages of winter wheat were collected. From these data, spectral and morphological parameters were directly extracted. Five machine learning algorithms were then employed to compare and evaluate the yield prediction performance at each individual growth stage. Subsequently, an in-depth analysis was conducted, based on the identified optimal parameter combinations, to examine the relationships between various growth stages and the accuracy of yield predictions. The results revealed that both individual growth stages and their combinations significantly impacted the prediction of winter wheat yield. Among the single growth stages, the filling and flowering stages achieved the highest prediction accuracy, followed by the heading, booting, maturity, jointing, and tillering stages. When considering multiple growth stages, the prediction accuracy was progressively increased from dual-stage to tri-stage and quad-stage combinations. However, balancing the marginal gains in accuracy against factors such as data acquisition and processing costs, as well as computational resources, the tri-stage combination of “jointing + heading + filling” emerged as the most cost-effective solution. In terms of the five machine learning algorithms employed, the overall prediction accuracy ranked from the highest to the lowest was as follows: BPNN, RF, SVM, XGBoost, and SMR. Notably, while the optimal combinations of spectral and morphological parameters identified through the SHAP method varied across growth stages, they consistently enhanced the yield prediction accuracy for all stages excepted the jointing stage. The research result can provide valuable methodological insights and technical references for the precise prediction of winter wheat yield per unit area in the past.

    参考文献
    相似文献
    引证文献
引用本文

葛焱,朱志畅,臧晶荣,张睿男,金时超,徐焕良,翟肇裕.融合无人机多时相参数的冬小麦单产估测方法[J].农业机械学报,2025,56(1):344-355. GE Yan, ZHU Zhichang, ZANG Jingrong, ZHANG Ruinan, JIN Shichao, XU Huanliang, ZHAI Zhaoyu. Yield Estimation of Winter Wheat Based on Multi-temporal Parameters by UAV Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):344-355.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:
文章二维码