基于彩色与热红外图像信息融合的肉鸡死鸡识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

科技创新2030—“新一代人工智能”重大项目(2021ZD0113804-3)


Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高规模化肉鸡养殖场中肉鸡死鸡识别的精度,基于彩色图像和热红外图像,分别提出了基于两阶段与单阶段的肉鸡死鸡检测方法。在两阶段方法中,首先使用YOLO v11-seg网络对彩色图像中肉鸡进行分割,获取肉鸡掩膜坐标;然后提取单只肉鸡热红外图像,使用YOLO v8-cls分类网络对单只肉鸡热红外图像进行分类。在单阶段方法中,基于彩色图像和配准热红外图像分别构建了G通道替换融合图像、加权融合图像、小波变换融合图像以及频域变换融合图像,使用多源融合图像数据集基于YOLO v11s目标检测网络构建了肉鸡死鸡检测模型。结果表明,两阶段肉鸡死鸡检测方法中,肉鸡实例分割平均精确率为94.2%,单只肉鸡热红外图像分类准确率为99.4%。单阶段肉鸡死鸡检测方法中,基于小波变换融合图像构建的肉鸡死鸡检测模型获得了最高的检测精度,检测平均精确率为93.0%。两种方法相比,单阶段检测方法在公共测试集上精确率更高,为92.3%,推理速度更快(6.1 ms/f),单模型部署更加简单。对肉鸡热红外图像温度分布分析表明,低周龄肉鸡与高周龄肉鸡的体表温度分布具有明显差异。提出的肉鸡死鸡检测方法,能够在高密度养殖下的恶劣成像环境中对肉鸡死鸡实现准确识别,为其他畜禽死亡检测提供了技术参考。

    Abstract:

    In order to improve the accuracy of dead broiler detection in large-scale broiler farms, based on color images and thermal infrared images, two-stage and one-stage dead broiler detection methods for broilers were proposed, respectively. In the two-stage method, the YOLO v11-seg network was firstly used to segment broilers in color images to obtain broiler mask coordinates; then individual broiler thermal infrared images were extracted and classified by using the YOLO v8-cls classification network. In the one-stage method, G-channel replacement fusion images, weighted fusion images, wavelet transform fusion images, and frequency domain transform fusion images were constructed based on color images and registered thermal infrared images. Multi-source fusion image datasets were used to build a dead broiler detection model based on the YOLO v11s object detection network. The results showed that in the two-stage dead broiler detection method, the mAP of broiler instance segmentation was 94.2%, and the classification accuracy of individual broiler thermal infrared images was 99.4%. In the one-stage dead broiler detection method, the model built based on wavelet transform fusion images achieved the highest detection accuracy, with mAP of 93.0%. Compared with the two-stage method, the one-stage detection method had a higher precision rate of 92.3% on the public test set, faster inference speed (6.1 ms/f), and easier to be deployed. Analysis of the temperature distribution of individual broiler thermal infrared images indicated that there were significant differences in body surface temperature distribution between low-age and high-age broilers. The dead broiler detection method proposed can accurately identify dead broilers in the harsh imaging environment under high-density breeding, and it can provide a technical reference for the death detection of other livestock and poultry.

    参考文献
    相似文献
    引证文献
引用本文

郝宏运,姜伟,罗升,孙宪法,王粮局,王红英.基于彩色与热红外图像信息融合的肉鸡死鸡识别方法[J].农业机械学报,2025,56(1):47-55,64. HAO Hongyun, JIANG Wei, LUO Sheng, SUN Xianfa, WANG Liangju, WANG Hongying. Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):47-55,64.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:
文章二维码