基于深度学习的刺萼龙葵实时识别与计数方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省高层次人才项目(C20231104)


Application of Deep Learning for Real-time Detection, Localization and Counting of Solanum rostratum Dunal
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    刺萼龙葵(Solanum rostratum Dunal,SrD )作为一种全球性有害入侵杂草,已在多个国家广泛分布,对当地的农业 和生态系统安全造成了严重威胁。设计了一种深度学习网络模型(TrackSolanum)进行刺萼龙葵的现场实时检测、定位和计数。TrackSolanum 网络模型由检测模块、跟踪模块和定位计数模块3部分构成,检测模块采用 YOLO_EMA 检测刺萼龙葵,跟踪模块利用 DeepSort 对连续视频帧中刺萼龙葵进行多目标追踪,定位计数模块通过质心定位和目标 ID 过线失效实现刺萼龙葵的定位和计数。YOLO_EMA 模型在测试集上的精确率(Precision,P)、召回率(Recall,R)、 平均精度(Average precision,AP)和帧率(Frame per second,FPS)分别达到 93.7%、93.6%、97.8% 和 91 f/s,证明了其在刺萼龙葵现场实时检测 任务中的有效性。为进一步验证 YOLO_EMA 网络的检测性能,对原始 YOLO v8、YOLO_EMA 以及本团队前期设计的 YOLO_CBAM进行了消融试验。此外,讨论了刺萼龙葵不同生长阶段对检测效果的影响,在刺萼龙葵幼苗期,TrackSolanum模型的精确率、召回率、平均精度和帧率分别为95.9%,96.4%,98.6%和74f/s。在刺萼龙葵生长期,TrackSolanum模型的精确率、召回率、平均精度和帧率分别为96.3%,95.4%,97.0%和71f/s,均表现出良好的检测结果。现场试验结果表明,针对无人机飞行在2 m 高度获取的视频,TrackSolanum 模型的精确率和召回率分别达到 94.2% 和 96.5%,多目标跟踪准确率(Multiple object tracking accuracy,MOTA )和 IDF1 分别达到 80.6% 和 95.4%,计数失误率仅为 3.215%。TrackSolanum 模型可以用于刺萼龙葵的现场实时检测,并能够为刺萼龙葵入侵的危害评估和精准治理提供技术支持。

    Abstract:

    Solanum rostratum Dunal( SrD )is a globally harmful invasive weed, that has spread widely in many countries, and poses a serious threat to local agriculture and ecosystem security. A deep learning network model, TrackSolunam, was designed to realize real-time detection, localization, and counting for SrD. The TrackSolanum network model consisted of three parts :a detection module, a tracking module, and a localization and counting module. The main body of the detection module consisted of YOLO v8 with the added EMA attention mechanism, which can detect SrD plants in real time. The main body of the tracking module was based on DeepSort, which enabled multi-object tracking based on the output of the detection module. It can identify the same SrD plant in consecutive video frames, avoiding repeated identification and counting. The localization module located the plants of SrD that were detected by searching for their centroids and can output the specific coordinates of the centroids in each frame, facilitating subsequent removal processes. The counting module avoided the issue of repeated counts by specific processing that the target ID was invalid after it crossed the detection line. The YOLO_EMA model achieved precision, recall, AP and FPS of 93.7%, 93.6%, 97.8% and 91 f/s, respectively, demonstrating its effectiveness in real-time detection tasks for SrD in the field. To further validate the detection performance of the YOLO_EMA network, an ablation study comparing the original YOLO v8, YOLO_EMA and the previously designed YOLO_CBAM was conducted. Additionally, the impact of different growth stages of SrD on detection performance was discussed. During the seedling stage, the TrackSolanum model achieved precision, recall, AP, and FPS of 95.9%, 96.4%, 98.6% and 74 f/s, respectively. In the growth stage, the TrackSolanum model′s precision, recall, AP, and FPS were 96.3%, 95.4%, 97.0% and 71 f/s, respectively, all demonstrating good detection results. The field test results showed that for the video acquired by UAV flight at 2 m height, the precision and recall of the TrackSolanum model reached 94.2% and 96.5%, respectively, and the MOTA and IDF1 reached 80.6%and 95.4%, respectively, with the counting error rate of only 3.215%. The TrackSolanum model can be used for real-time detection of SrD in the field, providing crucial technical support for hazard assessment and precise management of SrD invasion.

    参考文献
    相似文献
    引证文献
引用本文

杜世峰,杨亚帅,程曼,袁洪波.基于深度学习的刺萼龙葵实时识别与计数方法[J].农业机械学报,2024,55(s1):295-305. DU Shifeng, YANG Yashuai, CHENG Man, YUAN Hongbo. Application of Deep Learning for Real-time Detection, Localization and Counting of Solanum rostratum Dunal[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):295-305.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码