基于改进UNet的樱桃树枝直径计算方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金项目(ZR2020MC084)


Calculation Method for Cherry branch Diameter Based on Improved UNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对果园环境中樱桃树图像分割和直径计算精度低的问题,本文提出一种基于改进 UNet 的休眠期樱桃树枝直径计 算方法。首先,对樱桃树的主干和枝条采用分类网格化标记,增加 UNet 对枝干数据的训练量;其次,选取通用性强的VGG16,替换 UNet 的主干特征提取网络,并在池化层后加入 SAM 模块,克服复杂背景和枝干结构的影响;再次,使用加权交叉熵损失函数,赋予各类目标不同的权值,解决像素类别不平衡问题;最后,在 UNet 获取的枝干掩膜图像中生成最大内接圆,通过最大内接圆直径计算枝干实际直径。实验结果表明,改进的 UNet 模型检测休眠期樱桃树的 MPA 和 MIoU 分别达到 85.79% 和 77.97%,相比原 UNet 模型提高 0.52 个百分点和4.49个百分点。将本文方法与实地测量的方法进行线性回归分析,得到树枝直径计算结果的决定系数均不小于 0.915 7,均方根误差均不大于 0.86 mm。表明本文提出的方法能准确分割樱桃树枝干图像,计算枝条直径,可为樱桃树自动化修剪提供有效的技术支持。

    Abstract:

    In response to the low accuracy of cherry tree image segmentation and diameter calculation in orchard environments, a dormant cherry branch diameter calculation method was proposed based on improved UNet. Firstly, the main trunk and branches of cherry trees were classified and grided to increase the training capacity of UNet on branch data. Secondly, VGG16 with strong universality was selected to replace the backbone feature extraction network of UNet, and a SAM module was added after the pooling layer to overcome the influence of complex backgrounds and branch structures. Again, using a weighted cross entropy loss function, assigning different weights to various targets to solve the problem of imbalanced pixel categories. Finally, the maximum inscribed circle was generated in the branch mask image obtained by UNet, and the actual diameter of the branch was calculated based on the maximum inscribed circle diameter. The experimental results showed that the improved UNet model achieved an MPA and MIoU of 85.79% and 77.97% for detecting dormant cherry trees, respectively, which were 0.52 percent points and 4.49 percent points higher than that of the original UNet model. Linear regression analysis was conducted between the described method and the field measurement method, and the determination coefficients of the branch diameter calculation results were all no less than 0.915 7, with root mean square errors no more than 0.86 mm. This indicated that the method proposed can accurately segment cherry tree branch images, calculate branch diameters, and provide effective technical support for automated pruning of cherry trees.

    参考文献
    相似文献
    引证文献
引用本文

李振东,李云飞,杨立伟,刘刚,吕树盛,宫艳晶.基于改进UNet的樱桃树枝直径计算方法[J].农业机械学报,2024,55(s1):263-269. LI Zhendong, LI Yunfei, YANG Liwei, LIU Gang, Lü Shusheng, GONG Yanjing. Calculation Method for Cherry branch Diameter Based on Improved UNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):263-269.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码