基于深度学习和地理分析的淤地坝遥感识别
DOI:
CSTR:
作者:
作者单位:

1.西北农林科技大学旱区农业水土工程教育部重点实验室;2.新疆大学地理与遥感科学学院,;3.西北农林科技大学水土保持科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD1900300)


Remote Sensing Identification of Check Dams Based on Deep Learning and Geographic Analysis
Author:
Affiliation:

1.Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,Ministry of Education,Northwest A F University;2.College of Geography and Remote Sensing Sciences,Xinjiang University;3.College of Soil and Water Conservation Science and Engineering,Northwest A F University;4.College of Soil and Water Conservation Science and Engineering,Northwest A&5.F University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确获取淤地坝的数目、位置及空间分布等信息是科学分析淤地坝减蚀和拦沙作用及其未来建设规划的重要基础。本研究以黄土高原延河流域淤地坝为研究对象,以高分二号影像以及Google Earth影像作为数据源分别制作坝体和坝地标签,选取深度学习目标检测(Faster R-CNN、YOLO v3、Cascade R-CNN和YOLOX)及语义分割(FCN、U-Net、PSPNet和DeepLab v3+)算法分别对淤地坝坝体及坝地进行识别提取,并结合地理分析方法实现流域尺度沟道缓冲区的框定,在缓冲区内进行淤地坝提取。结果表明:(1)在淤地坝坝体识别中,YOLOX模型表现最佳,在IoU阈值为0.50:0.95时,平均精度(AP)达69.4%。基于该模型对延河流域的影像进行识别,获得了1440个检测框,模型准确率为75.8%,召回率达85.7%。(2)在淤地坝坝地提取中,四个模型表现均较好,平均交并比、精确率、召回率及F1分数均达85%、90%、85%和88%以上。采用多数投票法结合四个模型的预测结果分别提取了流域内92.0 km2生产运行期坝地和10.6 km2蓄水拦泥期的坝地。(3)通过引入地理分析方法,坝体识别准确率从75.8%提升至84.5%,坝地提取精度由90.6%提高到96.7%,且识别提取效率提升1倍。该项研究为黄土高原及其他地区的淤地坝快速准确识别提供了重要手段,淤地坝监测结果为流域综合治理和水土保持规划提供了科学借鉴和理论指导。

    Abstract:

    Accurately obtaining information on the number, location, and spatial distribution of check dams is fundamental for scientifically analyzing their erosion reduction and sediment trapping effects, as well as for future construction planning. This study focuses on the Yanhe River Basin in the Loess Plateau, utilizing high-resolution imagery from GF-2 and Google Earth as data sources. Deep learning object detection algorithms (Faster R-CNN, YOLO v3, Cascade R-CNN, and YOLOX) and semantic segmentation algorithms (FCN, U-Net, PSPNet, and DeepLab v3+) were employed to identify and extract the check dam bodies and dam lands. Geographic analysis methods and comprehensive interpretation were used to optimize the extraction results of the check dams. The results are as follows: (1) In the identification of check dam bodies, the YOLOX model performed the best, achieving an average precision (AP) of 69.4% at an IoU threshold of 0.50:0.95. Using this model to identify images of the Yanhe River Basin, 1440 detection boxes were obtained, with an accuracy of 75.8% and a recall rate of 85.7%. (2) In the extraction of dam lands, all four models performed well, with an average IoU, precision, recall, and F1 score all exceeding 85%, 90%, 85%, and 88%, respectively. The majority voting method was used to combine the predictions of the four models, resulting in the extraction of 92.0 km2 of dam lands in the production and operation period and 10.6 km2 in the water storage and sediment trapping period. (3) By incorporating geographic analysis methods, the accuracy of check dam body identification increased from 75.8% to 84.5%, and the precision of dam land extraction improved from 90.6% to 96.7%, with the efficiency of identification and extraction doubling. These results indicate that the proposed method can be rapidly and accurately applied to the identification of check dams in the Loess Plateau, which is crucial for analyzing their impact on the ecological environment and for comprehensive management of small watersheds.

    参考文献
    相似文献
    引证文献
引用本文

孙立全,郭家龙,苑紫岩,冯 浩,吴淑芳.基于深度学习和地理分析的淤地坝遥感识别[J].农业机械学报,,().

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-06-21
  • 录用日期:2024-06-21
  • 在线发布日期:
  • 出版日期:
文章二维码