基于Shuffle-ZoeDepth单目深度估计的苗期
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32272931)


Measurement Method of Seedling Stage Maize Height Based on Shuffle-ZoeDepth Monocular Depth Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    株高是鉴别玉米种质性状及作物活力的重要表型指标,苗期玉米遗传特性表现明显,准确测量苗期玉米植株高度对玉米遗传特性鉴别与田间管理具有重要意义。针对传统植株高度获取方法依赖人工测量,费时费力且存在主观误差的问题,提出了一种融合混合注意力信息的改进ZoeDepth单目深度估计模型。改进后的模型将Shuffle Attention模块加入Decoder模块的4个阶段,使Decoder模块在对低分辨率特征图信息提取过程中能更关注特征图中的有效信息,提升了模型关键信息的提取能力,可生成更精确的深度图。为验证本研究方法的有效性,在NYU-V2深度数据集上进行了验证。结果表明,改进的Shuffle-ZoeDepth模型在NYU-V2深度数据集上绝对相对差、均方根误差、对数均方根误差为0.083、0.301mm、0.036,不同阈值下准确率分别为93.9%、99.1%、99.8%,均优于ZoeDepth模型。同时,利用Shuffle-ZoeDepth单目深度估计模型结合玉米植株高度测量模型实现了苗期玉米植株高度的测量,采集不同距离下苗期玉米图像进行植株高度测量试验。当玉米高度在15~25cm、25~35cm、35~45cm3个区间时,平均测量绝对误差分别为1.41、2.21、2.08cm,平均测量百分比误差分别为8.41%、7.54%、4.98%。试验结果表明该方法可仅使用单个RGB相机完成复杂室外环境下苗期玉米植株高度的精确测量。

    Abstract:

    Plant height is an important phenotypic indicator for identifying maize germplasm traits and crop vigor, and maize genetic characteristics are obvious at the seedling stage, so accurate measurement of plant height at the seedling stage is of great significance for maize genetic characteristics identification and field management. Aiming at the problem that traditional plant height acquisition methods rely on manual measurement, which is time-consuming and subjective error, an improved ZoeDepth monocular depth estimation model incorporating mixed attention information was proposed. The improved model added the Shuffle Attention module to the various stages in the Decoder module, so that the Decoder module was more able to pay attention to the effective information in all the feature maps in the process of extracting information from the low-resolution feature maps, which enhanced the model’s ability of key information extraction, and could generate more accurate depth maps. In order to verify the effectiveness of the method, the validation was carried out on the NYU-V2 depth dataset, and the results showed that the ARE, RMSE, LG were 0.083, 0.301mm and 0.036, and the accuracy δ under different thresholds of the improved Shuffle-ZoeDepth model were 93.9%, 99.1% and 99.8%, respectively, all of which were better than those of the improved Shuffle-ZoeDepth model on NYU-V2 depth dataset.In addition, the Shuffle-ZoeDepth monocular depth estimation model combined with the maize plant height measurement model was used to complete the measurement of seedling maize plant height, and maize height measurement experiments were carried out by collecting images of seedling maize at different distances, and when the maize height was in the three height intervals of 15~25cm, 25~35cm, and 35~45cm, the AE were respectively 1.41cm, 2.21cm, and 2.08cm, and the PE were 8.41%, 7.54%, and 4.98%, respectively. The experimental results showed that this method can accomplish the accurate measurement of maize plant height at the seedling stage in complex environments using only a single RGB camera with a complex outdoor environment.

    参考文献
    相似文献
    引证文献
引用本文

赵永杰,蒲六如,宋磊,刘佳辉,宋怀波.基于Shuffle-ZoeDepth单目深度估计的苗期[J].农业机械学报,2024,55(5):235-243,253. ZHAO Yongjie, PU Liuru, SONG Lei, LIU Jiahui, SONG Huaibo. Measurement Method of Seedling Stage Maize Height Based on Shuffle-ZoeDepth Monocular Depth Estimation[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):235-243,253.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-06
  • 出版日期: