设施生菜光合和蒸腾速率影响因素分析与预测模型构建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

科技部中央引导地方项目(XZ202202YD0002C)


Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光合速率及蒸腾速率是植物的2个重要生理指标。在全人工环境下,选取意大利生菜作为对象,设计并开展多环境变量对生菜光合速率及蒸腾速率影响的嵌套实验,得到环境因子对生菜光合速率及蒸腾速率的影响规律,应用神经网络构建生菜幼苗期光合速率及蒸腾速率预测模型。针对幼苗期生菜,选择温度、相对湿度、光子通量密度(Photosynthetic photon flux density, PPFD)及CO2浓度共4个环境影响因素,采用随机森林方法对数据进行相关性分析。结果表明,与蒸腾速率相关性由大到小的因素依次为CO2浓度、温度、相对湿度、PPFD,与光合速率相关性由大到小的因素依次为CO2浓度、PPFD、温度、相对湿度;采用枚举法确定隐藏层节点数和训练函数,通过遗传算法优化BP神经网络的初始权值和阈值,构建GA-BP神经网络生理指标预测模型。应用测试数据对模型进行验证,光合速率及蒸腾速率预测值与实测值的决定系数分别为0.96212、0.97944,均方根误差(RMSE)分别为2.9832μmol/(m2·s)、0.0014358mol/(m2·s),表明GA-BP神经网络在模型精度和迭代次数方面性能显著提高。研究结果可为设施生菜生产环境调控提供有效依据。

    Abstract:

    Photosynthesis rate and transpiration rate are crucial physiological indicators in plants. In a controlled artificial environment, Italian lettuce was chosen as the research subject. A nested experiment was conducted to investigate the multivariate impact on the photosynthesis rate and transpiration rate of lettuce. The study unveiled patterns of environmental factors affecting these rates, leading to the construction of a neural network prediction model for photosynthesis rate and transpiration rate during the seedling phase of lettuce. For lettuce seedlings, four factors were selected: temperature, relative humidity, photosynthetic photon flux density (PPFD), and environmental CO2 concentration. Using the random forest method, a correlation analysis of the data was carried out. The results revealed that factors strongly correlated with the transpiration rate, in descending order, were CO2 concentration, temperature, relative humidity, and PPFD. Meanwhile, for the photosynthesis rate, the factors were CO2 concentration, PPFD, temperature, and relative humidity. A GA-BP neural network physiological indicator prediction model was developed, employing the enumeration method to determine the number of hidden layer nodes and training functions, and optimizing the initial weights and thresholds of the BP neural network through a genetic algorithm. Testing with actual data, the determination coefficients of predicted and actual values for photosynthesis rate and transpiration rate were 0.96212 and 0.97944, respectively, with root mean square errors (RMSE) of 2.9832μmol/(m2·s) and 0.0014358mol/(m2·s). This demonstrated the significantly improved performance of the GA-BP neural network in terms of model accuracy and iteration times. In summary, the research result can provide a valuable basis for environmental regulation in facility lettuce production.

    参考文献
    相似文献
    引证文献
引用本文

张增林,杨杰,郭常江,韩文霆,杨振超.设施生菜光合和蒸腾速率影响因素分析与预测模型构建[J].农业机械学报,2024,55(1):339-349. ZHANG Zenglin, YANG Jie, GUO Changjiang, HAN Wenting, YANG Zhenchao. Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):339-349.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-27
  • 出版日期:
文章二维码