基于SimCC-ShuffleNetV2的轻量化奶牛关键点检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32272931)和陕西省技术创新引导计划项目(2022QFY11-02)


Lightweight Keypoint Detection Method of Dairy Cow Based on SimCC- ShuffleNetV2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有深度学习技术在奶牛关键点检测研究中尚存在网络复杂度高、检测速度慢等问题,提出了一种轻量化奶牛关键点检测模型SimCC-ShuffleNetV2。在模型中,主干网络采用ShuffleNetV2用于特征提取,有利于实现网络的轻量化;检测头采用SimCC用于关键点位置预测,SimCC采取坐标分类的方法使得检测更加简单高效。为了验证模型的性能,本研究设计了奶牛的关键点及骨架结构,并标注了3600幅图像用于模型的训练与测试。试验结果表明,SimCC-ShuffleNetV2模型的AP50:95为88.07%,浮点运算量为1.5×108,参数量为1.31×106,检测速度为10.87f/s,可以实现奶牛关键点的精确与高效检测。与基于回归的DeepPose网络、基于热力图的HRNet网络进行了对比试验,结果表明SimCC-ShuffleNetV2取得了精度与速度的良好平衡。同时,本研究通过更换不同主干与不同检测头的方式,对比验证了不同模块对模型性能影响,本研究所提出的模型在所有试验中均取得了最佳结果,表明ShuffleNetV2与SimCC的组合具备良好的关键点检测性能。为了验证模型的有效性,将模型应用于4种动作视频中提取骨架序列并将其送入ST-GCN网络以实现不同动作的分类,其分类准确率为84.56%,表明本研究提出的SimCC-ShuffleNetV2模型是良好的关键点提取器,可为奶牛行为识别等任务提供关键信息支撑。

    Abstract:

    Cow keypoint detection is important in research fields such as cow body measurement, behavior recognition, and weight estimation. However, existing deep learning methods for cow keypoint detection still suffer problems such as high network complexity and slow detection speed. A lightweight cow keypoint detection model SimCC-ShuffleNetV2 was proposed. In this model, ShuffleNetV2 was used as the backbone for feature extraction to achieve network lightweight. SimCC was used as the head to achieve keypoint position prediction. SimCC adopted a coordinate classification method that was simple and efficient. To validate the effectiveness of the model, cow keypoints and skeleton structures were designed, and 3600 images were annotated for training and testing. Experimental results showed that the SimCC-ShuffleNetV2 model got an AP50:95 of 88.07%, FLOPs of 1.5×108, parameters of 1.31×106, and detection speed of 10.87f/s, achieving accurate and efficient detection of cow keypoints. Experimental comparisons with the regression-based DeepPose and Heatmap-based HRNet networks demonstrated that SimCC-ShuffleNetV2 got a good balance between accuracy and speed. Moreover, different backbones and detection heads were replaced to verify the influence of different modules on model performance. And the proposed model achieved the best results in all experiments, demonstrating that the combination of ShuffleNetV2 and SimCC had good keypoint detection performance. The model was applied to extract skeleton sequences from four different action videos of cows, and the ST-GCN network was used to classify the four videos, achieving an 84.56% classification accuracy, which indicated that the proposed SimCC-ShuffleNetV2 model was a good keypoint extractor and could provide key information support for tasks such as cow action recognition.

    参考文献
    相似文献
    引证文献
引用本文

宋怀波,华志新,马宝玲,温毓晨,孔祥凤,许兴时.基于SimCC-ShuffleNetV2的轻量化奶牛关键点检测方法[J].农业机械学报,2023,54(10):275-281,363. SONG Huaibo, HUA Zhixin, MA Baoling, WEN Yuchen, KONG Xiangfeng, XU Xingshi. Lightweight Keypoint Detection Method of Dairy Cow Based on SimCC- ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):275-281,363.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-23
  • 出版日期:
文章二维码