基于区域语义和边缘信息融合的作物苗期植株分割模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

智慧农业研究院开放基金项目(IAR2021A02)、安徽省自然科学基金项目(2108085MC96、1808085ME158)和安徽省研发计划项目(202004a06020016、202004a06020061)


Segmentation of Crop Plant Seedlings Based on Regional Semantic and Edge Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为在自然环境下准确分割作物苗期植株,实现苗期植株定位及其表型自动化测量,本文提出一种融合目标区域语义和边缘信息的作物苗期植株分割网络模型。以U-Net网络构建主干网络,基于侧边深度监督机制,引导主干网络在提取特征时能感知植株边缘信息;利用空间空洞特征金字塔构建特征融合模块,融合主干网络和边缘感知模块提取的特征,融合后的特征图具有足够的细节信息和更强的语义信息;联合边缘感知的损失与特征融合的损失,构建联合损失函数,用于整体网络优化。实验结果表明,本文模型对不同数据集的作物植株的语义分割像素准确率高达0.962,平均交并比达到0.932;与U-Net、SegNet、PSPNet、DeepLabV3模型相比,本文模型在不同数据集上平均交并比最高提升0.07,对自然环境下作物苗期植株具有良好的分割效果和泛化能力,可为植株定位、对靶喷药、长势识别等应用提供重要依据。

    Abstract:

    To segment crop plant seedlings accurately in natural environment, a segmentation network model based on regional semantic and edge information was presented. Firstly, the U-Net network was used as the backbone network, and the side depth supervision mechanism was used to guide the backbone network to perceive the plant edge information when extracting features. Then, based on atrous spatial pyramid pooling, the feature fusion module was built to fuse the semantic information in the backbone network and the edge information extracted by the edge perception module. The fused feature map would have enough detail information and strong semantic information. Besides, combined with the loss of edge perception and the loss of feature fusion, the joint loss function was defined for the overall network optimization. The experimental results showed that the proposed model can achieve the pixel accuracy of 0.962 and the mean intersection over union of 0.932. Compared with the U-Net, SegNet, PSPNet and DeepLabV3 models,the mean intersection over union of the used model was about 0.07 higher. Therefore, the proposed model can achieve good segmentation effect and generalization ability for crop plant seedlings in natural environment, which can provide important basis for plant location, target spraying, growth recognition and other applications.

    参考文献
    相似文献
    引证文献
引用本文

廖娟,陈民慧,张锴,邹禹,张顺,朱德泉.基于区域语义和边缘信息融合的作物苗期植株分割模型[J].农业机械学报,2021,52(12):171-181. LIAO Juan, CHEN Minhui, ZHANG Kai, ZOU Yu, ZHANG Shun, ZHU Dequan. Segmentation of Crop Plant Seedlings Based on Regional Semantic and Edge Information Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):171-181.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-28
  • 出版日期:
文章二维码