采摘机器人深度视觉伺服手-眼协调规划研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31971795)、江苏大学农业装备学部项目(4111680002)、江苏省优势学科项目(PAPD-2018-87)和江苏省研究生创新基金项目(CXZZ12_0693)


Hand-Eye Coordination Planning with Deep Visual Servo for Harvesting Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有采摘机器人的识别-采摘精度与效率偏低等问题,开展了采摘机器人深度视觉伺服手-眼协调规划研究。开发了在手RealSense深度伺服的小型升降式采摘机器人,进行了采放果的工作空间与姿态分析,针对“眼在手上”模式建立了手-眼协调的坐标变换模型。对采摘机器人提出了基于在手RealSense深度伺服的由远及近手眼协调策略,并根据RealSense与机械臂参数完成了基于深度视觉的远近景协调关键点间分段动作规划。手眼协调采摘试验表明,末端在X、Y、Z方向的平均定位精度为3.51、2.79、3.35mm,平均耗时为19.24s,其中机械臂从初始位开始采果的平均耗时为12.04s,中间识别与运算的平均耗时为3.82s,放果动作平均耗时为7.2s,机械臂动作耗时占整个环节的80.2%。该机器人结构和在手RealSense深度伺服的手眼协调策略可满足采摘作业需求。

    Abstract:

    Aiming at the low precision and efficiency of the fruit identification and harvesting motion of existing harvesting robots, the hand-eye coordination planning with deep visual servo for harvesting robot was carried out. A small lifting harvesting robot with deep visual servo of RealSense-in-hand was developed, which was composed of the autonomous vehicle, lifting bin, electric fork lifter, grip-cut integrated end-effector, and 3-freedom manipulator. The workspace and posture analysis of fruit picking and placing was performed, and the coordinate transformation model of hand-eye coordination was established for the eye-in-hand mode. Based on the depth visual servo of RealSense-in-hand, the far-to-close hand-eye coordination strategy was proposed for the harvesting robot. The canopy detection from a distance, sub-region division and location, close-range fruit accurate identification and positioning were effectively combined, so that the step-by-step visual guidance of the manipulator was realized. According to the parameters of RealSense and the manipulator, the segmented motion planning between far-to-close key points based on depth vision was completed. It was shown in the hand-eye coordinated harvesting test that, the average positioning accuracy of the end-effector in the X, Y and Z directions was 3.51mm, 2.79mm and 3.35mm, respectively. The average time consuming was 19.24s, which included the motion time of the manipulator from the initial position to picking position (12.04s), the fruit recognition and computing time (3.82s), and the fruit placing time (7.2s). The time of manipulator motion accounted for 80.2% of the whole cycle. Both the robot structure and the hand-eye coordination strategy based on depth visual servo of RealSense-in-hand can meet the needs of fruit harvesting operation.

    参考文献
    相似文献
    引证文献
引用本文

金玉成,高杨,刘继展,胡春华,周尧,李萍萍.采摘机器人深度视觉伺服手-眼协调规划研究[J].农业机械学报,2021,52(6):18-25. JIN Yucheng, GAO Yang, LIU Jizhan, HU Chunhua, ZHOU Yao, LI Pingping. Hand-Eye Coordination Planning with Deep Visual Servo for Harvesting Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):18-25.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二维码