基于深度学习的农作物病虫害图像识别技术研究进展
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31371531)


Research Progress on Image Recognition Technology of Crop Pests and Diseases Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习作为图像识别领域重要的技术手段,具有识别速度快、准确率高等优势。阐明了深度学习技术研究的意义及必要性,概述了国内外深度学习领域农作物病虫害图像识别技术的研究进展,对深度学习技术在图像识别研究中存在的问题进行归纳总结,并指出深度学习领域中的图像识别方法存在训练样本大、模型结构复杂、复杂图像识别正确率低等问题。提出了一种CNN与胶囊网络的组合模型,经过初步实验,模型的图像识别正确率达93.75%,比CNN模型提高了3.55个百分点。随着深度学习技术的不断发展,胶囊网络研究将是未来的发展趋势。

    Abstract:

    Throughout the history of agricultural development, crop pests and diseases have always been one of the main obstacles hindering the development of agricultural economy. The crop disease identification system based on digital image processing technology had the characteristics of fast, accurate and realtime, which can help the farmers to take effective prevention measures in time. As an important technical means in the field of image recognition, deep learning has broad application prospects. The research progress of crop pest and disease image recognition technology in deep learning field in China and abroad was reviewed. The significance and necessity of deep learning technology research were clarified. The training samples of deep learning technology in image recognition research were large and the model structure was complex. Complex image recognition accuracy was low. It was proposed that improving the recognition accuracy of complex images would be the development direction of future research.

    参考文献
    相似文献
    引证文献
引用本文

贾少鹏,高红菊,杭潇.基于深度学习的农作物病虫害图像识别技术研究进展[J].农业机械学报,2019,50(Supp):313-317. JIA Shaopeng, GAO Hongju, HANG Xiao. Research Progress on Image Recognition Technology of Crop Pests and Diseases Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(Supp):313-317.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-10
  • 出版日期: 2019-07-10
文章二维码