基于热红外图像的奶牛乳房炎自动检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2018YFD0500705-2018YFD050070502)


Automatic Detection Method of Dairy Cow Mastitis Based on Thermal Infrared Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高奶牛乳房炎的检测精度,利用热红外图像测量奶牛关键部位温度,提出了一种奶牛眼睛和乳房自动定位算法。首先对奶牛热红外图像的灰度直方图进行分析,然后提取阈值分割后图像中的HSV(Hue, Saturation, Value)颜色特征和骨架特征,并基于HSV自动检测奶牛眼睛位置,计算骨架特征向量,用支持向量机(Support vector machine,SVM)分类技术自动检测奶牛乳房位置。为了验证定位算法的有效性,对随机选取的40头自然行走的奶牛进行试验验证,结果表明,本文提出的定位算法可以有效定位奶牛眼睛、乳房位置,其定位误差在20像素以内的视频帧识别精度为6867%。根据定位算法所获取的奶牛眼睛和乳房的温度差值进行奶牛乳房炎检测试验,通过温度阈值对奶牛乳房炎发病程度进行评级,并与体细胞计数法(Somatic cell count,SCC)检测结果进行对比,结果表明,等级1检测准确率为33.3%,等级2检测准确率为87.5%。本文研究结果能较准确获取奶牛自然行走状况下眼睛和乳房的位置和温度。

    Abstract:

    In order to improve the detection accuracy of cow mastitis, an automatic eye and breast location method was proposed by using thermal infrared imaging technology to measure the temperature of key parts of cow. The gray scale histogram of the thermal infrared image of dairy cows was firstly analyzed, and then the HSV color features and skeleton features in the threshold segmentation images were extracted. Then, the eye position of dairy cows was automatically detected based on the HSV (Hue, Saturation, Value), and the skeleton feature vector was calculated, which was used to classify and automatically detect the breast position by the support vector machine. In order to verify the effectiveness of the positioning algorithm, totally 40 randomly selected naturally walking cows were verified. The test results showed that the positioning algorithm proposed could effectively locate the eyes and breasts of cows, and the accuracy of video frame recognition within the positioning error of 20 pixels was 68.67%. The cow eyes obtained according to the positioning algorithm was carried out on the temperature difference value of breast milk cow mastitis test, rating by temperature threshold and degree of dairy cow mastitis morbidity and somatic cell count method, comparing the test results it was showed that the rating 1 detection accuracy was 33.3%, the rating 2 detection accuracy was 87.5%. The results of this study can accurately obtain the position and temperature of the eyes and breast under the natural walking condition.

    参考文献
    相似文献
    引证文献
引用本文

张旭东,康熙,马丽,刘刚.基于热红外图像的奶牛乳房炎自动检测方法[J].农业机械学报,2019,50(Supp):248-255,282. ZHANG Xudong, KANG Xi, MA Li, LIU Gang. Automatic Detection Method of Dairy Cow Mastitis Based on Thermal Infrared Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(Supp):248-255,282.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-10
  • 出版日期: 2019-07-10
文章二维码