基于粗糙集和模糊聚类的复杂曲面零件可制造性评价
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划(973计划)资助项目(2011CB706702)和吉林大学研究生创新基金资助项目(20121078)


Manufacturability Evaluation of Complex Surface Parts Based on Rough Set Theory and Fuzzy Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂曲面零件的可制造性,建立了复杂曲面零件可制造性评价指标和模型,在设计初期能够对曲面的可加工性进行预测,提高曲面加工质量和效率。将影响复杂曲面零件可制造性的因素分为几何构型复杂度和加工技术复杂度。首先针对曲面几何构型复杂度,基于模糊聚类算法,按照复杂曲面曲率分布特征和斜率分布特征对曲面进行聚类分析,建立曲面簇群体模式;然后综合考虑加工技术复杂度中的各属性,运用粗糙集理论的数据离散和指标约减算法计算各属性权重,形成曲面评价知识库;最后利用模糊模式识别和曲面相似度的计算方法预测设计曲面零件的可制造性。实例分析表明,该方法能够较准确地对曲面可制造性进行评价。

    Abstract:

    In order to improve the ability to predict the manufacturability of complex surfaces in the design stage, the manufacturability evaluation indexes and models of complex part surfaces were studied. The factors affecting the manufacturability of the complex part surfaces were divided into two groups, the geometrical complexity (GC) and the technological complexity (TC). Considering the features in GC, the complex part surfaces were classified into several clusters according to distribution features of complex surfaces and slopes, which established the group patterns of the parts. Then the discrete and the reduction algorithms of rough set were used to calculate the weights of the feature attributes including a few attributes in TC. After that, the method of fuzzy pattern recognition and the calculation of surface similarity were used to evaluate the manufacturability of parts. A case study showed that the method could evaluate the manufacturability of the complex part surfaces accurately.

    参考文献
    相似文献
    引证文献
引用本文

樊成,张雷,袁俊,赵继.基于粗糙集和模糊聚类的复杂曲面零件可制造性评价[J].农业机械学报,2013,44(10):253-259,265. Fan Cheng, Zhang Lei, Yuan Jun, Zhao Ji. Manufacturability Evaluation of Complex Surface Parts Based on Rough Set Theory and Fuzzy Clustering[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):253-259,265.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-10-14
  • 出版日期:
文章二维码