差异演化算法改进与应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50775153);山西省自然科学基金资助项目(2008011027—1)


Modified Differential Evolution and Its Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种改进的差异演化算法MDE(modified differential evolution algorithm),该算法首先对差异演化算法的缩放因子进行混沌计算,减少了用户参与程度,平衡了算法的收敛速度与全局搜索能力;其次引入灾变因子,对群体中的个体进行小概率淘汰,同时又有新的个体加入,从而提高了群体多样性,提高了算法的全局搜索能力。仿真实验与工程实例表明,该算法具有较好的全局搜索能力。

    Abstract:

    Differential evolution (DE) is one kind of evolution algorithm based on difference of individuals. DE has exhibited good performance on optimization. However, for the high dimension and perplexed function, the algorithm is apt to fall into premature convergence, its performance is strongly influenced by the value of each strategy parameter including scale factor. Therefore, a modified differential evolution algorithm (MDE) was proposed to solve the optimization problems. First, the scale factor was randomly initialized and calculated by chaos each generation, which decreases the participation of user and balances the convergency speed and global optimal capability. Next, disaster factor was introduced to eliminate the individual of a small probability, along with a new individual generating, which can increase the diversity of population and global optimal capability. Simulated results and engineering optimization design example showed that MDE outperforms standard DE in global optimal capability. 

    参考文献
    相似文献
    引证文献
引用本文

卢青波,张学良,温淑花,武美先,兰国生,刘丽琴.差异演化算法改进与应用[J].农业机械学报,2010,41(2):193-197. Lu Qingbo, Zhang Xueliang, Wen Shuhua, Wu Meixian, Lan Guosheng, Liu Liqin. Modified Differential Evolution and Its Application[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(2):193-197.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码