基于振动的土壤挖掘阻力与耗能特性试验研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0702103)、山东省自然科学基金面上项目(ZR2017MEE016)、山东省农业重大应用技术创新项目(SD2019NJ009-7)和山东省农机装备研发创新计划项目(2017YF007、2018YF005-02)


Experimental Research on Soil Digging Resistance and Energy Consumption Based on Vibration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究振动频率、振动方向等参数对振动式土壤挖掘降阻特性和耗能特性的影响,设计开发了振动式土壤挖掘阻力试验台。经理论分析、计算确定了振动挖掘机构运动参数。在土壤平均相对湿度为27%、平均土壤坚实度为2.2MPa条件的室内土槽系统中,在挖掘深度150mm、前进速度0.15~1.00m/s、振动频率2~20Hz的因素条件下,利用该试验台开展了土壤振动挖掘阻力和耗能特性试验研究。结果表明,振动式土壤挖掘能够有效降低工作阻力,其降阻率先随着振动频率增大而增大,在2~20Hz频率段,前后方向振动和垂向振动振幅分别为13mm和10mm时,其最大降阻率分别可达到21%和25%。降阻率在10~14Hz后增长速度变缓,表明该区间处于土壤的自振频率区间。前后方向振动下土壤挖掘降阻率和振动速度与前进速度的比值有关,当振动速度小于前进速度时,降阻率比较小,随着振动频率增加而缓慢增大;当振动速度大于前进速度后,在对应的频率点其降阻率会迅速上升,之后增长速度逐渐变缓。由于需要额外激振能量输入,两种振动方向的强迫振动式土壤挖掘综合耗能并不减少,在振动频率低于10Hz下,耗能比范围在1~1.07,但超过10Hz后,耗能比会随着振动频率增大以较快速度增加。振幅的增大能够使土壤挖掘阻力获得一定的降低,但同时振动挖掘耗能有较大的增加。

    Abstract:

    In order to study the influence of vibration frequency, vibration direction and other parameters on the resistance reduction and energy consumption characteristics of vibrating agricultural soil digging, a vibration soil digging resistance test-bed was designed and developed. Through theoretical analysis and calculation, the motion parameters of the vibration digging mechanism were determined. In the indoor soil tank system with 27% soil moisture and 2.2MPa soil firmness, under the test conditions of 150mm digging depth, 0.15~1.00m/s forward speed and 2~20Hz vibration frequency, the experimental study on the characteristics of excavation resistance and energy consumption of vibration test soil was carried out by using the test-bed. The test results showed that the working resistance of the vibration soil digging can be effectively reduced. The resistance reduction was increased with the increase of vibration frequency, during the frequency of 2~20Hz, the maximum resistance reduction rates of forward-backward vibration and vertical vibration can reach 21% and 25%, respectively. The increasing rate of resistance reduction was slowed down after 10~14Hz, which indicated that the range was in the natural frequency range of soil. The resistance reduction rate of soil digging was related to the ratio of vibration speed and forward speed. When the vibration speed was less than the forward speed, the resistance reduction rate was relatively small and only increased slowly with the increase of frequency. When the vibration speed was greater than the forward speed, the resistance reduction rate would be risen rapidly at the corresponding frequency point, after that, the growth rate was gradually slowed down. Due to the need for additional excitation energy input, the comprehensive energy consumption of forced vibration soil digging in two vibration directions was not reduced. Under the vibration of less than 10Hz, the energy consumption ratio was in the range of 1~1.07, but when the vibration frequency exceeded 10Hz, the energy consumption ratio would be increased rapidly with the increase of frequency. The increase of amplitude can reduce the resistance of soil digging, but the energy consumption of vibration digging would be increased greatly.

    参考文献
    相似文献
    引证文献
引用本文

王东伟,王家胜,尚书旗.基于振动的土壤挖掘阻力与耗能特性试验研究[J].农业机械学报,2020,51(s1):267-272. WANG Dongwei, WANG Jiasheng, SHANG Shuqi. Experimental Research on Soil Digging Resistance and Energy Consumption Based on Vibration[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):267-272.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期: